Journal of the American Chemical Society
Communication
(8) Sayed, S. Y.; Fereiro, J. A.; Yan, H.; McCreery, R. L.; Bergren, A.
J. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11498.
(9) Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.;
body of the SAM or on the interfaceswould lead to enough
of a change in the shape of the tunneling barrier to change the
tunneling current.
Nijhuis, C. A. Nat. Nanotechnol. 2013, 8, 113.
The conclusion from this work is that dipoles from a number
of functional groups at the terminus (T in this paper), and from
amides (-CONH- or -NHCO-) in the interior (M)7,29 of a
SAM, have no (or small, i.e., less than a factor of 3) effect on
the magnitude of experimental tunneling currents. This result
adds to a number of observations about the relations between
molecular structure and tunneling (particularly previous studies
on the effect of the structure of the top interface on J(V)
summarized in Table S1) which suggest that the structure of
this interface influences rates of tunneling only when reactions
(e.g., redox reactions, or “hopping” for Fc9,16,17) are possible.
From these and previous studies we infer the following: (i)
Familiar organic terminal groups linked at the terminal (T)
position to aliphatic chains have too small an influence on the
shape of the tunneling barrier to change the rate of charge
tunneling.7,20,21 (ii) More exotic functional groupse.g., metal
complexes9,16,17may influence J(V) significantly, but the
mechanism may involve hopping rather than pure tunneling.
(iii) Dipolar SAMs with much smaller bandgaps (e.g., highly
conjugated aromatic systems) than those tested here might
result in changes in J(V). (iv) The composition of top electrode
seems not to be a primary determinant of the electrical
characteristics of the junction.
(10) Li, Z.; Smeu, M.; Ratner, M. A.; Borguet, E. J. Phys. Chem. C
2013, 117, 14890.
(11) Fracasso, D.; Muglali, M. I.; Rohwerder, M.; Terfort, A.;
Chiechi, R. C. J. Phys. Chem. C 2013, 117, 11367.
(12) McCreery, R. L.; Yan, H.; Bergren, A. J. Phys. Chem. Chem. Phys.
2013, 15, 1065.
(13) Simeone, F. C.; Yoon, H. J.; Thuo, M. M.; Barber, J. R.; Smith,
B.; Whitesides, G. M. J. Am. Chem. Soc. 2013, 135, 18131.
(14) Liao, K.-C.; Yoon, H. J.; Bowers, C. M.; Simeone, F. C.;
Whitesides, G. M., submitted, 2013.
(15) Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.;
Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.
(16) Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc.
2010, 132, 18386.
(17) Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc.
2009, 131, 17814.
(18) Sayed, S. Y.; Bayat, A.; Kondratenko, M.; Leroux, Y.; Hapiot, P.;
McCreery, R. L. J. Am. Chem. Soc. 2013, 135, 12972.
(19) Pujari, S. P.; van Andel, E.; Yaffe, O.; Cahen, D.; Weidner, T.;
van Rijn, C. J. M.; Zuilhof, H. Langmuir 2013, 29, 570.
̌ ́
(20) Lovrincic, R.; Kraynis, O.; Har-Lavan, R.; Haj-Yahya, A.-E.; Li,
W.; Vilan, A.; Cahen, D. J. Phys. Chem. Lett. 2013, 4, 426.
(21) Haj-Yahia, A.; Yaffe, O.; Bendikov, T.; Cohen, H.; Feldman, Y.;
Vilan, A.; Cahen, D. Adv. Mater. 2013, 25, 702.
(22) Pourhossein, P.; Chiechi, R. C. ACS Nano 2012, 6, 5566.
(23) Wimbush, K. S.; Reus, W. F.; van der Wiel, W. G.; Reinhoudt,
D. N.; Whitesides, G. M.; Nijhuis, C. A.; Velders, A. H. Angew. Chem.,
Int. Ed. 2010, 49, 10176.
ASSOCIATED CONTENT
* Supporting Information
■
S
(24) Gergel-Hackett, N.; Aguilar, I.; Richter, C. A. J. Phys. Chem. C
2010, 114, 21708.
(25) Cohen, Y. S.; Vilan, A.; Ron, I.; Cahen, D. J. Phys. Chem. C 2009,
113, 6174.
Detailed experimental procedures, spectroscopic data for all
new compounds, histograms of current densities, and summary
of junction measurements. This material is available free of
(26) Wang, G.; Kim, T.-W.; Jang, Y. H.; Lee, T. J. Phys. Chem. C
2008, 112, 13010.
AUTHOR INFORMATION
Corresponding Author
(27) Hoft, R. C.; Ford, M. J.; Cortie, M. B. ICONN ’06, International
Conference on Nanoscience and Nanotechnology; Brisbane, Qld.,
Australia; 2006; p 3.
(28) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277.
(29) Thuo, M. M.; Reus, W. F.; Simeone, F. C.; Kim, C.; Schulz, M.
D.; Yoon, H. J.; Whitesides, G. M. J. Am. Chem. Soc. 2012, 134, 10876.
(30) Natan, A.; Zidon, Y.; Shapira, Y.; Kronik, L. Phys. Rev. B 2006,
73, 193310.
(31) Cornil, D.; Olivier, Y.; Geskin, V.; Cornil, J. Adv. Funct. Mater.
2007, 17, 1143.
(32) Sushko, M. L.; Shluger, A. L. Adv. Funct. Mater. 2008, 18, 2228.
(33) Romaner, L.; Heimel, G.; Ambrosch-Draxl, C.; Zojer, E. Adv.
Funct. Mater. 2008, 18, 3999.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a subcontract from Northwestern
University from the U.S. Department of Energy (DE-
SC0000989) for work on synthesis of materials and measure-
ments of charge transport. The salary for H.J.Y. and C.M.B. is
supported by the DOE fund of Northwestern University; the
salary for C.M.B. is also supported by the Bill and Melinda
Gates Foundation under award 51308.
(34) Gershevitz, O.; Sukenik, C. N.; Ghabboun, J.; Cahen, D. J. Am.
Chem. Soc. 2003, 125, 4730.
(35) Fukagawa, H.; Yamane, H.; Kera, S.; Okudaira, K. K.; Ueno, N.
Phys. Rev. B 2006, 73, 041302(R).
(36) Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Thuo, M. M.; Tricard,
S.; Whitesides, G. M. J. Phys. Chem. C 2012, 116, 6714.
(37) Haynes, W. M., Ed.CRC Handbook of Chemistry and Physics,
94th ed.; CRC Press: Boca Raton, FL, 2013.
REFERENCES
■
(1) Mirkin, C. A.; Ratner, M. A. Annu. Rev. Phys. Chem. 1992, 43,
719.
(2) Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.
(3) Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.;
Chiechi, R. C. J. Am. Chem. Soc. 2011, 133, 9556.
(4) Tran, T. K.; Smaali, K.; Hardouin, M.; Bricaud, Q.; Ocafrain, M.;
Blanchard, P.; Lenfant, S.; Godey, S.; Roncali, J.; Vuillaume, D. Adv.
Mater. 2013, 25, 427.
(5) Bernasek, S. L. Angew. Chem., Int. Ed. 2012, 51, 39.
́
(6) Guedon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.;
Hummelen, J. C.; van der Molen, S. J. Nat. Nanotechnol. 2012, 7, 305.
(7) Yoon, H. J.; Shapiro, N. D.; Park, K. M.; Thuo, M. M.; Soh, S.;
Whitesides, G. M. Angew. Chem., Int. Ed. 2012, 51, 4658.
19
dx.doi.org/10.1021/ja409771u | J. Am. Chem. Soc. 2014, 136, 16−19