Angewandte
Chemie
284– 288; d) K. Mikami, K. Aikawa, Y. Yusa, M. Hatano, Org.
Table 1: Asymmetric carbonyl-ene reaction by Pd catalysts with chirally
flexible phosphane ligands.
Lett. 2002, 4, 91 – 94; e) K. Mikami, K. Aikawa, Y. Yusa, Org.
Lett. 2002, 4, 95 – 97; f) K. Mikami, K. Aikawa, Y. Yusa, J. J.
Jodry, M. Yamanaka, Synlett 2002, 10, 1561 – 1578; for similar
work on the biphep ligand, see: g) M. D. Tudor, J. J. Becker, P. S.
White, M. R. Gagne, Organometallics 2000, 19, 4376 – 4484;
h) J. J. Becker, P. S. White, M. R. Gagne, J.Am.Chem.Soc. 2001,
123, 9478 – 9479.
Entry PdII catalyst[a]
[mol%] ee [%][b] Yield [%][c]
1
2
3
4
[(S)-binap–Pd–(S)-dabn]
5.0
5.0
2.5
2.5
78
69
81
76
80
78
86
85
[5] X-ray crystallographic analysis was performed with a Bruker
SMART 1000 diffractometer (graphite monochromator, MoKa
radiation, l = 0.71073 ) at 299 K. Crystal data for [Pd2Cl4(te-
traphos)]·2MeOH (C66H58O2P4Cl4Pd2): monoclinic, C2/C, a =
18.796(19) , b = 12.631(13) , c = 27.10(3) , a = 908, b =
[(S)-biphep–Pd–(S)-dabn]
[(P,S,S)-tetraphos–Pd–(S)-dabn]
[(P,S,S)-tetraphos–Pd–(S)-dm-
dabn]
105.748(18)8, g = 908, V= 4249.9(3) 3, Z = 4, 1calcd
=
[a] All reactions were examined through isomerization by enantiopure
diamines except for (S)-binap. [b] Enantiopurity was determined by chiral
GC analysis on a CP-Cyclodextrin-b-2,3,6-M-19 column. [c] Yield of
isolated product.
1.486 gcmÀ3, crystal dimensions 0.37 0.11 0.05 mm3, range
for data collection 2qmax = 54.968, reflections collected 18277,
independent reflections 6783 (Rint = 0.0382). The structures were
solved by direct methods (SHELXL-97); the final cycle of full-
matrix least-squares on F2 was based on 6783 observed
reflections (I > 2s(I)) and 390 variable parameters, and con-
verged to R = 0.038, Rw = 0.080, and goodness of fit = 1.001.
CCDC-213825 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk). 1H NMR (300 MHz, CD2Cl2): d = 6.24–6.28 (m,
3H), 6.77 (dd, J = 8.1, 11.7 Hz, 2H), 6.92 (t, J = 8.1 Hz, 2H),
7.13–7.18 (m, 2H), 7.23–7.62 (m, 35H), 7.77–7.83 (m, 2H),
7.89 ppm (dd, J = 7.5, 12.6 Hz, 4H); 31P NMR (162 MHz,
CD2Cl2): d = 25.0 (s, 2P), 27.8 ppm (s, 2P).
Experimental Section
Dichloroethane (2.0 mL) was added to a mixture of (Æ )-1 (22.9 mg,
0.01 mmol) and (S)-dabn (6.0 mg, 0.021 mmol) in a 10-mL Schlenk
tube under an argon atmosphere, and the reaction mixture was stirred
at 808C for 2 h. After concentration under reduced pressure, the flask
was replenished with argon, and dichloromethane (2.0 mL), ethyl
glyoxylate (8) (30.6 mg, 0.6 mmol), and methylenecyclohexane (7)
(48 mL, 0.4mmol) was added sequentially to the solution. The
reaction mixture was stirred at room temperature for 24h, directly
loaded onto a silica-gel column, and eluted with hexane/EtOAc (3:1)
to afford (R)-9 in 86% yield as a colorless oil. The enantiomeric
excess was determined by chiral GC analysis; GC (column: CP-
Cyclodextrin-b-2,3,6-M-19, i.d. 0.25 mm 25 m, CHROMPACK; car-
rier gas: nitrogen, 75 kPa; column temperature: 1308C; injection and
detection temperature: 1608C; split ratio: 100:1), tR (R isomer):
31.3 min, tR (S isomer): 32.4min; 1H NMR (300 MHz, CDCl3): d =
1.26 (t, J = 6.9 Hz, 3H), 1.48–1.63 (m, 4H), 1.93–1.99 (m, 4H), 2.24
(dd, J = 7.8, 14.1 Hz, 1H), 2.40 (dd, J = 4.5, 14.1 Hz, 1H), 2.60 (d, J =
6.3 Hz, 1H), 4.19 (q, J = 6.9 Hz, 2H), 5.50 ppm (m, 1H); 13C NMR
(75 MHz, CDCl3): d = 14.4, 22.4, 23.0, 25.5, 28.7, 43.5, 61.8, 69.6, 126.0,
133.7, 175.9 ppm.
[6] a) M. Ogasawara, K. Yoshida, T. Hayashi, Organometallics 2000,
19, 1567 – 1571; b) F. Ozawa, A. Kubo, Y. Matsumoto, T.
Hayashi, Organometallics 1993, 12, 4188 – 4196.
[7] a) K. Mikami, T. Korenaga, T. Ohkuma, R. Noyori, Angew.
Chem. 2000, 112, 3854– 3857; Angew.Chem.Int.Ed. 2000, 39,
3707 – 3710; b) K. Mikami, Y. Yusa, T. Korenaga, Org.Lett. 2002,
4, 1643 – 1645.
[8] (Æ )-1: 31P NMR (162 MHz, CD2Cl2): d = 25.9 (s, 2P), 29.3 ppm
(s, 2P). (P,S,S)-2: 31P NMR (162 MHz, CD2Cl2): d = 22.0 (d,
J
P-P = 25.9 Hz, 2P), 25.7 ppm (d, JP-P = 25.9 Hz, 2P).
[9] (P,S,S)-5: 31P NMR (162 MHz, CD2Cl2): d = 24.8 (d, JP-P
=
Received: July 3, 2003 [Z52300]
19.9 Hz, 2P), 26.3 ppm (d,
JP-P = 19.9 Hz, 2P). (M,R,R)-5:
31P NMR (162 MHz, CD2Cl2): d = 22.7 (d, JP-P = 19.1 Hz, 2P),
28.2 ppm (d, JP-P = 19.1 Hz, 2P).
Keywords: chirality · ene reaction · helical structures ·
.
[10] For a general review of enantioselective ene reactions, see: a) K.
Mikami, M. Shimizu, Chem.Rev. 1992, 92, 1021 – 1050; b) L. C.
Dias, Curr.Org.Chem. 2000, 4, 305 – 342; for an excellent recent
example, see: c) D. A. Evans, S. W. Tregay, C. S. Burgey, N. A.
Paras, T. Vojkovsky, J.Am.Chem.Soc. 2000, 122, 7936 – 7943.
isomerization · palladium
[1] a) H. Hopf, Classics in Hydrocarbon Chemistry, Wiley-VCH,
Weinheim, 2000; b) C. Schmuck, Angew.Chem. 2003, 115, 2552 –
2556; Angew.Chem.Int.Ed. 2003, 42, 2448 – 2452; c) A. Urbano,
Angew.Chem. 2003, 115, 4116 – 4119; Angew.Chem.Int.Ed.
2003, 42, 3986 – 3989.
[2] a) E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive
Asymmetric Catalysis, Vol.1–3 , Springer, Berlin, 1999; b) Tran-
sition Metals for Organic Synthesis (Ed.: M. Beller, C. Bolm),
VCH, Weinheim, 1998; c) R. Noyori, Asymmetric Catalysis in
Organic Synthesis, Wiley, New York, 1994; d) H. Brunner, W.
Zettlmeier, Handbook of Enantioselective Catalysis, VCH,
Weinheim, 1993; e) Catalytic Asymmetric Synthesis, Vol.I and
II (Ed.: I. Ojima), VCH, New York, 1993, 2000.
[3] R. Noyori, H. Takaya, Acc.Chem.Res. 1990, 23, 345 – 350.
[4] a) K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R.
Noyori, Angew.Chem. 1999, 111, 517 – 519; Angew.Chem.Int.
Ed. 1999, 38, 495 – 497; b) K. Mikami, K. Aikawa, T. Korenaga,
Org.Lett. 2001, 3, 243 – 245; c) T. Korenaga, K. Aikawa, M.
Terada, S. Kawauchi, K. Mikami, Adv.Synth.Catal. 2001, 343,
Angew. Chem. Int. Ed. 2003, 42, 5458 –5461
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5461