J. Am. Chem. Soc. 1996, 118, 3311-3312
3311
plexes13 and salts14 catalyze the allylic amination of olefins by
arylhydroxylamines (eq 1). These catalytic reactions display
A Novel Intermediate in Allylic Amination
Catalyzed by Iron Salts
Radhey S. Srivastava, Masood A. Khan, and
Kenneth M. Nicholas*
unusual and synthetically attractive ene-reaction-type regiose-
lectivity (resulting in double-bond transposition). Mechanistic
studies of the reactions catalyzed by LMo(VI)O215 and (phthal)-
Fe(II)16 point to the intervention of PhNO, a proven enophile,17
as the active aminating agent, accounting for the observed
regioselectivity. However, our initial probe of the aminations
catalyzed by iron salts14 excluded the intermediacy of free
ArNO, suggesting that a coordinated organonitrogen species
could be the active aminating agent. To elucidate the mecha-
nism of these latter reactions we report herein (1) the isolation
and first structural elucidation of a metal complex of a C-nitroso
dimer and (2) evidence that this novel compound is the key
aminating agent in allylic aminations catalyzed by iron salts.
Department of Chemistry and Biochemistry
UniVersity of Oklahoma, Norman, Oklahoma 73019
ReceiVed January 11, 1996
In contrast to hydrocarbon oxidation which provides several
important industrial and laboratory processes for the production
of oxygenated compounds,1 the direct synthesis of organoni-
trogen compounds from hydrocarbons remains an attractive but
largely exlusive goal.2-6 The paucity of direct nitrogenation
reactions and mechanistic questions regarding the few known
ones has, in turn, stimulated interest in the chemistry of
organonitrogen metal complexes, including those having amido,7
imido,8 and C-nitroso9 ligands. To date, however, examples
of N-transfer from such complexes to hydrocarbons are rare.10
Following early reports by Sharpless and Mares of stoichio-
metric allylic amination of olefins and acetylenes by LnMoO-
(η2-RNO)9b,c and X(dNTs)2 (X ) S,Se),11 we and others
Scheme 1
12
recently have found that LnMo(VI)O2 and Fe(II,III) com-
To identify the intermediate iron complex(es) in the FeCl2,3
-
(1) Reviews: Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis;
Wiley: New York, 1992; pp 138-161, 172-174, 237-264. Sheldon, R.
A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds;
Academic Press: New York 1981; pp 271-249.
catalyzed aminations, preparative reactions of the iron chlorides
with PhNHOH and PhNO were conducted. The reaction of
FeCl2 with PhNO (1:2) in CHCl3 (20 °C) or dioxane (80 °C)
produced azoxybenzene and a dark red brown product 1 (ca.
50% yield following CH2Cl2/hexane recrystallization) whose IR
spectrum18 suggested the presence of coordinated PhNO (Scheme
1). Compound 1 was also formed (along with PhNO) and azo-
and azoxybenzene) when FeCl3 and PhNHOH (20 °C, CHCl3)
were combined, and most importantly, 1 also could be isolated
from the FeCl2-promoted amination reaction of 2-methyl-2-
pentene (2-MP) by PhNHOH (80 °C, dioxane, 2 h). The
structure of 1‚1.5(CH2Cl2) was established by X-ray diffraction19
and is shown in Figure 1 along with key bond lengths and
angles. Complex 1, {Fe[Ph(O)NN(O)Ph]3}[FeCl4]2, is thus
(2) Among the few useful hydrocarbon nitrogenation reactions are
propylene ammoxidation (ref 3), butadiene hydrocyanation (ref 4), and olefin
aziridination (ref 5) and hydroamination (ref 6).
(3) Review: Grasselli, R. K. J. Chem. Ed. 1986, 63, 216.
(4) Arthur, P.; Pratt, B. C. U.S. Patent 2,571,099, 1951. Drinkard, W.
C.; Lindsay, R. V. U.S. Patent 3,496,215, 1970. Parshall, G. W.; Ittel, S.
D. Homogeneous Catalysis, Wiley: New York, 1992; pp 42-46.
(5) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes,
D. M. J. Am. Chem. Soc. 1993, 115, 5328. Lowenthal, R. E.; Masamune,
S. Tetrahedron Lett. 1991, 32, 7373. Li, Z.; Quan, R. W.; Jacobsen, E. N.
J. Am. Chem. Soc. 1995, 117, 5889. Atkinson, R. S.; Fawcett, J.; Williams,
P. J. Tetrahedron Lett. 1995, 36, 3241. Noda, K.; Hosoya, N.; Irie, R.
Synlett 1993, 7, 469. Perez, P. J.; Brookhart, M.; Templeton, J. L.
Organometallics 1993, 12, 261.
(6) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992,
114, 275. Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108.
(7) Bryndza, H.; Tam, W. Chem. ReV. 1988, 88, 1163. Fryzuk, M. D.;
Montgomery, C. D. Coord. Chem. ReV. 1989, 95, 1. Glueck, D. D.;
Bergman, R. G. Organometallics 1991, 10, 1479. Koelliker, R.; Millstein,
D. Angew. Chem., Int. Ed. Engl. 1991, 30, 707. Ge, Y-W.; Peng, F.; Sharp,
P. R. J. Am. Chem. Soc. 1990, 112, 2632. Joslin, F. L.; Johnson, M. P.;
Mague, J. T.; Roundhill, D. M. Organometallics 1991, 10, 41. Matsunga,
P. T.; Hess, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 1994, 116, 3665.
Rahim, M.; Bushweller, C. H.; Ahmed, K. J. Organometallics 1994, 13,
4952.
-
found to consist of tetrahedral Fe(III)Cl4 anions and a six-
coordinate dication having iron(II) bound through the oxygens
of three azobenzene dioxide ligands. Remarkably, while
C-nitroso compounds are well known to exist as azo dioxide
dimers in the solid state,20 1 proVides the first crystallographi-
cally established metal complex haVing a C-nitroso dimer (azo
dioxide) ligand.21 The distinctly distorted, nonoctahedral cation
(8) (a) Nugent, W. A.; J. A. Mayer Metal-Ligand Multiple Bonds;
Wiley: New York, 1988; Chapter 6, pp 220-287. (b) Holm, R. H. Chem.
ReV. 1987, 87, 1401. Dyer, P. W.; Gibson, V. C.; Clegg, W. J. Chem.
Soc., Dalton Trans. 1995, 3313. Wigley, D. E.; Morrison, D. L. Inorg.
Chem. 1995, 34, 2610. Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am.
Chem. Soc. 1995, 117, 974. Cummins, C. C.; Schrock, R. R.; Davis, W.
M. Inorg. Chem. 1994, 33, 1448. McGrane, P. L.; Livinghouse, T. J. Org.
Chem. 1992, 57, 1323. Brunner, H.; Meier, W.; Wachter, J. J. Organomet.
Chem. 1989, 362, 95.
(9) (a) Cameron, M.; Gowenlock, B. G.; Vasapollo, G. Chem. Soc. ReV.
1990, 19, 355. (b) Liebeskind, L. S.; Sharpless, K. B.; Wilson, R. D.; Ibers,
J. A. J. Am. Chem. Soc. 1978, 100, 7061. (c) Muccigrosso, D. A.; Jacobson,
S. E.; Apgar, P. A.; Mares, F. Ibid. 1978, 100, 7063.
(13) Johannsen, M.; Jorgensen, K. A. J. Org. Chem. 1994, 59, 214.
(14) Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett. 1994, 35, 8739.
(15) Srivastava, R. S.; Nicholas, K. M. J. Org. Chem. 1994, 59, 5365.
(16) Johannsen, M.; Jorgenson, K. A. J. Org. Chem. 1995, 60, 5979.
(17) Keck, G. E.; Webb, R. R.; Yates, J. B. Tetrahedron 1981, 37, 4007.
Knight, G. T. J. Chem. Soc., Chem. Commun. 1970, 1016. Banks, R. E.;
Haszeldine, R. N.; Miller, P. J. Tetrahedron Lett. 1970, 4417.
(18) For 1: IR (KBr, cm-1) 3099 (w), 3077 (w), 1681 (m), 1651 (m),
1600 (m), 1481 (s), 1462 (s), 1374 (s), 1161 (s), 1076 (m), 1020 (m) 962
(s), 922 (m), 762 (s), 686 (s); UV-vis (nm) 215, 280, 300; MS (FAB) 214
(Ph2N2O2+), 269 [Fe(PhNO)2+].
(19) Crystals of 1 (CH2Cl2/hexane) are triclinic P1, a ) 15.572(9) Å, b
) 16.308(5) Å, c ) 19.841(7) Å, R ) 88.87(3)°, â ) 86.80(4)°, γ ) 86.60-
(4)°, V ) 5021(4) Å3. Data were collected at 198 K with Mo KR (λ )
0.71073 Å) radiation and corrected for Lorentz, polarization, and empirical
absorption effects. The structure was solved by the heavy atom method
and refined by full-matrix least squares on F2 using all reflections
(SHELXTL 5.0); final conventional R1 ) 0.088 (WR2 ) 0.0206, GOF )
1.0) for 7928 “observed” reflections with I g 2σ(I). The asymmetric unit
contains two dications, four anions, and three CH2Cl2 molecules.
(20) Zuman, P.; Shah, B. Chem. ReV. 1994, 94, 1621 and references
cited therein.
(10) Examples of -NR transfer to unsaturated hydrocarbons are largely
restricted to additions to the CdC or CtC: Sharpless, K. B.; Patrick, D.
W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305.
Sharpless, K. B. J. Org. Chem. 1976, 41, 1976. Cummins, C. C.; Shaller,
C. P.; VanDuyne, G.; Wolczanski, P. T.; Chan, A. W. E.; Hoffmann, R. J.
Am. Chem. Soc. 1991, 113, 2985. Walsh, P. J.; Hollander, F. J.; Bergman,
R. G. Organometallics 1993, 12, 3705. For transfer to benzyl radicals,
see: Chan, D. M. T.; Nugent, W. A. Inorg. Chem. 1985, 24, 1422.
(11) Sharpless, K. B.; Hori, T. J. Org. Chem. 1976, 41, 176. Kresze,
G.; Braxmeier, H.; Munsterer, H. Org. Syn. 1987, 65, 159. Katz, T. J.;
Shi, S. J. Org. Chem. 1994, 59, 8297. Sharpless, K. B.; Hori, T.; Truesdale,
L. K.; Dietrich, C. O. J. Am. Chem. Soc. 1976, 98, 269.
(21) The formation of Pb(a), Sn(b,c), and Ti(c) complexes of dimeric
C-nitroso ligands has been proposed on the basis of IR or 13C NMR data:
(a) Williams, K. C.; Imhoff, D. W. J. Organomet. Chem. 1972, 42, 107.
(b) Williams, K. C.; Imhoff, D. W. Inorg. Nucl. Chem. Lett. 1973, 9, 227.
(c) Cameron, M.; Gowenlock, B. G. Polyhedron 1992, 11, 2781.
(12) Srivastava, A.; Ma, Y.; Pankayatselvan, R.; Dinges, W.; Nicholas,
K. M. J. Chem. Soc., Chem. Commun. 1992, 853.
0002-7863/96/1518-3311$12.00/0 © 1996 American Chemical Society