532
M. Mokhtary, F. Najafizadeh / C. R. Chimie 15 (2012) 530–532
References
reaction mixture was stirred for 2–3 h under reflux
conditions until TLC analysis showed that no phenol
remained. The reaction mixture was filtered, and the
solvent was evaporated on a rotatory evaporator under
diminished pressure. The solid residue was recrystalized
from water/ethanol to afford pure crystals of the proper
coumarins in 72–96% yields. The products were charac-
terized by FT-IR, 1HNMR and physical constants.
[1] J.J. Yourick, R.L. Bronaugh, J. Appl. Toxicol. 17 (1997) 153.
[2] G.J. Keating, R. Okennedy, R.D. Thornes (Eds.), Coumarins: biology,
applications and mod of action, John Wiley & Sons, New York, 1997.
[3] H. Yamazaki, M. Tanaka, T. Shimada, J. Chromatogr. B 721 (1999) 13.
[4] M.E.F. Izquierdo, J.Q. Granados, V.M. Mir, M.C.L. Martinez, Food. Chem.
70 (2000) 251.
[5] R.F. Zhang, H.P. Zhang, J.C. Shen, Synth. Metal. 106 (1999) 157.
[6] J.C. de Melo, P.F. Fernandes, J. Mol. Struct. 565 (2001) 69.
[7] B. Cohen, D. Huppert, J. Phys. Chem. A 105 (2001) 7157.
[8] T. Eckardt, V. Hagen, B. Schada, R. Schmidt, C. Schweitzer, J. Bending, J.
Org. Chem. 67 (2002) 703.
3. Results and discussion
[9] R. Jakubiak, T.J. Bunning, R.A. Vaia, L.V. Natarajan, V.P. Tondiglia, Adv.
Mater. 15 (2003) 241.
[10] A.J. Killard, R. Okennedy, D.P. Bogan, J. Pharm. Biomed. Anal. 14 (1996)
1585.
[11] S.J. Semple, S.F. Nobbs, S.M. Pyke, G.D. Reynolds, R.L.P. Flower, J.
Ethnopharmacol. 68 (1999) 283.
[12] G. Hirsh, V. Fuster, J. Ansell, J.L. Halperin, J. Am. Coll. Cardiol. 41 (2003)
1633.
[13] M. Pisklak, D. Maciejewska, F. Herold, I. Wawer, J. Mol. Struct. 649
(2003) 169–176.
[14] S.R. Trenor, A.R. Shultz, B.J. Love, T.E. Long, Chem. Rev. 104 (2004) 3059.
[15] C.M. Liu, J.J. Qiu, R. Bao, C. Zhao, X.J. Cheng, Y. Xnu, Y. Zhou, React. Func.
Polym. 66 (2006) 455.
Characterizing of the Lewis acid sites presented on the
polymer was performed by recording the FT-IR spectrum
of PVPP-BF3, which shows a strong broad absorption at
1000–1060 cmÀ1 for the B-F bonds and a moderate
absorption at 1646 cmÀ1 corresponds to the imine group
on the backbone (Fig. 1). Loading capacity of the reagent
was determined by titration and found to be 10 mmol/g,
whereas its silica-supported analogue has
capacity of less than 4 mmol/g [39,40].
a loading
[16] C.J. Tsai, Y. Chen, React. Func. Polym. 66 (2006) 1327.
[17] E. Knoevenagel, Ber. Dtsch. Chem. Ges. Berlin 37 (1904) 4461.
[18] A.M. Song, X.B. Wang, K.S. Lam, Tetrahedron Lett. 44 (2003) 1755.
[19] C.H. Schroeder, K.P. Link, J. Am. Chem. Soc. 75 (1953) 1886.
[20] C. Wiener, C.H. Schroeder, K.P. Link, J. Am. Chem. Soc. 79 (1957) 5301.
[21] E.C. Horning, Org. Synth. 3 (1955) 281.
[22] S. Frere, V. Thiery, T. Besson, Tetrahedron Lett. 42 (2001) 2791.
[23] K.M. Potdar, S.S. Mohile, M.M. Salunkhe, Tetrahedron Lett. 42 (2001)
9285.
[24] D.S. Bose, A.P. Rudradas, M.H. Babu, Tetrahedron Lett. 43 (2002) 9195.
[25] A. Shockravi, H. Valizadeh, M.M. Heravi, Phosphorus Sulfur Silicon 177
(2002) 2835.
[26] P.R. Singh, D.U. Singh, S.D. Samant, Synlett. (2004) 1909.
[27] S.K. De, R.A. Gibbs, Synthesis (2005) 1231.
[28] B.S. Kumar, P.S. Kumar, N. Srinivasulu, B. Rajitha, Y.T. Reddy, P.N. Reddy,
R.H. Udupi, Chem. Heterocycl. Comp. 42 (2006) 172.
[29] A. Hegedus, Z. Hell, Catal. Lett. 112 (2006) 105.
[30] J.C. Rodrı´guez-Domı´nguez, G. Kirsch, Synthesis (2006) 1895.
[31] M. Maheswara, V. Siddaiah, G.L.V. Damu, Y.K. Rao, C.V. Rao, J. Mol. Catal.
A Chem. 255 (2006) 49.
[32] J.C. Rodrı´guez-Domı´nguez, G. Kirsch, Tetrahedron Lett. 47 (2006) 3279.
[33] R. Torviso, D. Mansilla, A. Belizan, E. Alesso, G. Moltrasio, P. Vazquez, L.
Pizzio, M. Blanco, C. Caceres, Appl. Catal. A Gen. 339 (2008) 53.
[34] K.K. Upadhyay, R.K. Mishra, A. Kumar, Catal. Lett. 121 (2008) 118.
[35] B. Karimi, D. Zareyee, Org. Lett. 10 (2008) 3989.
[36] S.V. Ley, I.R. Baxendale, R.N. Bream, P.S. Jackson, A.G. Leach, D.A.
Longbottom, M. Nesi, J.S. Scott, R.I. Storer, S.J. Taylor, J. Chem. Soc.
Perkin Trans. 1 (2000) 3815.
A variety of coumarins was prepared from phenols and
ethyl acetoacetate in the presence of PVPP-BF3 in good to
excellent yields (Table 1, entries 1–10). It is worth
mentioning that the corresponding coumarin was isolated
by simple filtration of the catalyst followed by crystalliza-
tion from the crude filtrate. In some cases, the products
were further purified by column chromatography. Inter-
estingly, this reagent gives not only good yields of the
products but also regenerates easily. Furthermore, the
PVPP-BF3 can be reused and retained its activity after
several months of storage.
4. Conclusion
We have developed a simple and efficient method for
the Pechmann reaction using PVPP-BF3 complex as a high
loading of Lewis acid, which is stable, easy to prepare and
handle, and represents effective activity for the Pechmann
reaction. This method provides an easy access to a variety
of 4-methyl coumarins.
[37] C. Liu, S. Cui, Z. Wang, X. Zhang, J. Phys. Chem. B 109 (2005) 14807.
[38] M.M. Lakouraj, M. Mokhtary, Monatsh. Chemie 140 (2009) 53.
[39] K. Wilson, J.H. Clark, Chem. Commun. (1998) 2135.
[40] K. Wilson, D.J. Adams, G. Rothenberg, J.H. Clark, J. Mol. Catal. A Chem.
156 (2000) 309.
Acknowledgements
We are grateful to Islamic Azad University of Rasht
Branch for financial assistance in this work.