Polyacridine-Melittin Gene Delivery Peptides
Bioconjugate Chem., Vol. 21, No. 1, 2010 83
(13) Subbalakshmi, C., Nagaraj, R., and Sitaram, N. (1999)
Biological activities of C-terminal 15-residue synthetic fragment
of melittin: design of an analog with improved antibacterial
activity. FEBS Lett. 448, 62–6.
(14) Terwilliger, T. C., and Eisenberg, D. (1982) The structure of
melittin. II. Interpretation of the structure. J. Biol. Chem. 257,
6016–22.
(30) Bezanilla, M., Drake, B., Nudler, E., Kashlev, M., Hansma,
P. K., and Hansma, H. G. (1994) Motion and enzymatic
degreadation of DNA in the atomic force microscope. Biophys.
J. 67, 2454–9.
(31) Mosmann, T. (1983) Rapid colorimetric assay for cellular
growth and survival: application to proliferation and cytotoxicity
assays. J. Immunol. Methods 65, 55–63.
(32) Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K.,
Gartner, F. H., Provenzano, M. D., Fujumoto, E. K., Goeke,
N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of
protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.
(33) Combet, C., Blanchet, C., Geourjon, C., and Deleage, G.
(2000) Network protein sequence alignment. TIBS 25, 147–150.
(34) Legendre, J. Y., and Szoka, F. C., Jr. (1993) Cyclic amphi-
pathic peptide-DNA complexes mediate high-efficiency trans-
fection of adherent mammalian cells. Proc. Natl. Acad. Sci.
U.S.A. 90, 893–7.
(35) Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel,
M. L. (1992) Influenza virus hemagglutinin HA-2 N-terminal
fusogenic peptides augment gene transfer by transferrin-polyl-
ysine-DNA complexes: Toward a synthetic virus-like gene-
transfer vehicle. Proc. Natl. Acad. Sci. U.S.A. 89, 7934–7938.
(36) Midoux, P., Kichler, A., Boutin, V., Maurizot, J. C., and
Monsigny, M. (1998) Membrane permeabilization and efficient
gene transfer by a peptide containing several histidines. Biocon-
jugate Chem. 9, 260–267.
(37) Schuster, M. J., Wu, G. Y., Walton, C. M., and Wu, C. H.
(1999) Multicomponent DNA carrier with a vesicular stomatitis
virus G-peptide greatly enhances liver-targeted gene expression
in mice. Bioconjugate Chem. 10, 1075–1083.
(38) Nishikawa, M., Yamauchi, M., Morimoto, K., Ishida, E.,
Takakura, Y., and Hashida, M. (2000) Heptocyte-targeted in ViVo
gene expression by intraveneous injection of plasmid DNA
complexed with synthetic multi-functional gene delivery system.
Gene Ther. 7, 548–555.
(39) Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F.,
Divita, G., Brasseur, R., and Jacobs, E. (2002) New basic
membrane-destabilizing peptides for plasmid-based gene delivery
in vitro and in vivo. Mol. Ther. 5, 104–14.
(40) Li, W., Nicol, F., and Szoka, F. C., Jr. (2004) GALA: a
designed synthetic pH-responsive amphipathic peptide with
applications in drug and gene delivery. AdV. Drug DeliVery ReV.
56, 967–985.
(41) Collard, W. T., Yang, Y., Kwok, K. Y., Park, Y., and Rice, K. G.
(2000) Biodistribution, metabolism, and in vivo gene expression
of low molecular weight glycopeptide polyethylene glycol peptide
DNA co-condensates. J. Pharm. Sci. 89, 499–512.
(42) McKenzie, D. L., Kwok, K. Y., and Rice, K. G. (2000) A
potent new class of reductively activated peptide gene delivery
agents. J. Biol. Chem. 275, 9970–9977.
(15) Legendre, J. Y., Bohrmann, T. B., Deuschle, U., Kitas, E.,
and Supersaxo, A. (1997) Dioleoymelittin as a novel serum-
insensitive reagent for efficient transfections of mammalian cells.
Bioconjugate Chem. 8, 57–63.
(16) Rozema, D. B., Ekena, K., Lewis, D. L., Loomis, A. G., and
Wolff, J. A. (2003) Endosomolysis by masking of a membrane-
active agent (EMMA) for cytoplasmic release of macromolecules.
Bioconjugate Chem. 14, 51–7.
(17) Read, M. L., Logan, A., and Seymour, L. W. (2005) Barriers
to gene delivery using synthetic vectors, in AdVances in Genetics
(Hall, J. C., Dunlap, J. C., Friedmann, T., and van Heyningen,
V., Eds.) pp 19-46, Academic Press, London.
(18) Dash, P. R., Read, M. L., Barrett, L. B., Wolfert, M. A., and
Seymour, L. W. (1999) Factors affecting blood clearance and in
vivo distribution of polyelectrolyte complexes for gene delivery.
Gene Ther. 6, 643–650.
(19) Burke, R. S., and Pun, S. H. (2008) Extracellular barriers to
in vivo PEI and PEGylated PEI polyplex-mediated gene delivery
to the liver. Bioconjugate Chem. 19, 693–704.
(20) Kwok, K. Y., McKenzie, D. L., Evers, D. L., and Rice, K. G.
(1999) Formulation of highly soluble poly(ethylene glycol)-
peptide DNA condensates. J. Pharm. Sci. 88, 996–1003.
(21) Kwok, K. Y., Park, Y., Yongsheng, Y., McKenzie, D. L., and
Rice, K. G. (2003) In vivo gene transfer using sulfhydryl
crosslinked PEG-peptide/glycopeptide DNA co-condensates.
J. Pharm. Sci. 92, 1174–1185.
(22) Chen, C. p., Kim, J. s., Liu, D., Rettig, G. R., McAnuff, M. A.,
Martin, M. E., and Rice, K. G. (2007) Synthetic PEGylated
glycoproteins and their utility in gene delivery. Bioconjugate
Chem. 18, 371–378.
(23) Ueyama, H., Takagi, M., Waki, M., and Takenaka, S. (2001)
DNA binding behavior of peptides carrying acridinyl units: First
example of effective poly-intercalation. Nucleic Acids Symp. Ser.
(Oxf.) 1, 163–164.
(24) Haensler, J., and Szoka, J. F. C. (1993) Synthesis and
characterization of a trigalactosylated bisacridine compound to
target DNA to hepatocytes. Bioconjugate Chem. 4, 85–93.
(25) Shiraishi, T., Hamzavi, R., and Nielsen, P. E. (2005) Targeted
delivery of plasmid DNA into the nucleus of cells via nuclear
localization signal peptide conjugated to DNA intercalating bis-
and trisacridines. Bioconjugate Chem. 16, 1112–1116.
(26) Boulanger, C., Di Giorgio, C., and Vierling, P. (2005)
Synthesis of acridine-nuclear localization signal (NLS) conjugates
and evaluation of their impact on lipoplex and polyplex-based
transfection. Eur. J. Med. Chem. 40, 1295–306.
(43) Park, Y., Kwok, K. Y., Boukarim, C., and Rice, K. G. (2002)
Synthesis of sulfhydryl crosslinking poly (ethylene glycol)
peptides and glycopeptides as carriers for gene delivery. Bio-
conjugate Chem. 13, 232–239.
(44) Read, M. L., Bremner, K. H., Oupicky, D., Green, N. K.,
Searle, P. F., and Seymour, L. W. (2003) Vectors based on
reducible polycations facilitate intracellular release of nucleic
acids. J. Gene Med. 5, 232–45.
(45) Zhou, Q.-H., Wu, C., Manickam, D., and Oupicky´, D. (2009)
Evaluation of pharmacokinetics of bioreducible gene delivery
vectors by real-time PCR. Pharm. Res. 26, 1581–1589.
(46) Meyer, M., Philipp, A., Oskuee, R., Schmidt, C., and Wagner,
E. (2008) Breathing life into polycations: functionalization with
pH-responsive endosomolytic peptides and polyethylene glycol
enables siRNA delivery. J. Am. Chem. Soc. 130, 3272–3.
(27) Tung, C., Zhu, T., Lackland, H., and Stein, S. (1992) An
acridine amino acid derivative for use in Fmoc peptide synthesis.
Peptide Research 5, 115–8.
(28) Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A., and
Buckner, C. K. (1975) Alkylating derivatives of amino acids and
peptides. Synthesis of N-maleoylamino acids, [1-(N-maleoylgly-
cyl)cysteinyl]oxytocin, and [1-(N-maleoyl-11-aminoundecanoyl)
cysteinyl]oxytocin. Effects on vasopressin-stimulated water loss
from isolated toad bladder. J. Med. Chem. 18, 1004–1010.
(29) Wadhwa, M. S., Collard, W. T., Adami, R. C., McKenzie,
D. L., and Rice, K. G. (1997) Peptide-mediated gene delivery:
influence of peptide structure on gene expression. Bioconjugate
Chem. 8, 81–8.
BC9003124