MedChemComm
Research Article
The 2D optimal conformation and the 3D diagram of the
interaction with the FabH active site are presented in
Fig. 3a and b, respectively. The main chain of ARG151 forms
two hydrogen bonds (HE–O, 2.27 Å, 111.676°; HE–O, 2.18 Å,
165.173°) with two oxygen atoms of compound F18.
These interactions were vital for the stabilization of the
binding mode. As shown in Fig. 4a, inheriting the advantage
of mimicking the original ligand malonyl-CoA, compound
F18 exhibited more powerful interactions with the active site.
The receptor surface model in Fig. 4b also suggests that F18
embedded deeply into the active site of FabH. Thus, com-
pound F18 could be expected as a potential inhibitor of
E. coli FabH with potent antibacterial activity.
2 J. Wang, S. M. Soisson, K. Young, W. Shoop, S. Kodali and A.
Galgoci, Nature, 2006, 441, 358–361.
3 H. Song, G. Z. Ao and H. Q. Li, Expert Opin. Ther. Pat.,
2014, 24, 19–27.
4 D. J. Payne, P. V. Warren, D. J. HoImes, Y. Ji and J. T.
Lonsdale, Drug Discovery Today, 2001, 6, 537–544.
5 C. Y. Lai and J. E. Cronan, J. Biolumin. Chemilumin.,
2003, 19, 51494–51503.
6 Y. J. Lu, Y. M. Zhang and C. O. Rock, Biochem. Cell Biol.,
2004, 82, 145–155.
7 S. Natarajan, J. K. Kim, T. K. Jung, T. T. Ngoc Doan, H. P. T.
Ngo, M. K. Hong, S. Kim, V. P. Tan, S. J. Ahn, S. H. Lee, Y.
Han, Y. J. Ahn and L. W. Kang, Mol. Cells, 2011, 33, 19–25.
8 S. W. White, J. Zheng, Y. M. Zhang and C. O. Rock, Annu.
Rev. Biochem., 2005, 74, 791–831.
Conclusions
9 R. Veyron-Churlet, O. Guerrini, L. Mourey, M. Daffé and D.
Zerbib, Mol. Microbiol., 2004, 54, 1161–1172.
In this paper, we synthesized 36 novel derivatives with
N-acylhydrazone and deoxygenated seven-membered fused
rings, and evaluated their antibacterial activities against
E. coli FabH for the first time. Several compounds (F14,
F17–F19, F24, F29, F30, F32, F33) presented potent anti-
Gram-negative and -positive bacterial activities. Compound
F18 showed the most potent antibacterial activity with MIC
values of 1.56–3.13 μg mL−1 against the tested bacterial
strains and exhibited the most potent E. coli FabH inhibitory
activity with an IC50 of 2.0 μM. Preliminary structure–activity
relationships and molecular modeling studies provided fur-
ther insight into the interactions between the enzyme and its
ligands. This study showed F18 was a potential inhibitor of
E. coli FabH with potent antibacterial activity. Moreover, it
provided valuable information for the designing E. coli FabH
inhibitors as antibacterial agents in the future. With these
promising results, we will be utilizing the structure of com-
pound F18 as the basis for further compound design and
SAR development in the future. Moreover, the development
of similar novel compounds based on this core structure
containing nitrogen heterocyclic or alkane chains instead of
a benzene ring on the right side will be investigated in future
studies.
10 H. Q. Li, Y. Luo and H. L. Zhu, Bioorg. Med. Chem., 2011, 19,
4454–4459.
11 Y. Wang and S. Ma, ChemMedChem, 2013, 8, 1589–1608.
12 R. A. Daines, I. Pendrak, K. Sham, G. S. Van Aller, A. K.
Konstantinidis, J. T. Lonsdale, C. A. Janson, X. Qiu, M.
Brandt, S. S. Khandekar, C. Silverman and M. S. Head,
J. Med. Chem., 2003, 46, 5–8.
13 K. S. Gajiwala, S. Margosiak, J. Lu, J. Cortez, Y. Su, Z. Nie
and K. Appelt, FEBS Lett., 2009, 583, 2939–2946.
14 R. J. Heath, S. White and C. O. Rock, Appl. Microbiol.
Biotechnol., 2002, 58, 695–703.
15 J. Beld, J. L. Blatti, C. Behnke, M. Mendez and M. D.
Burkart, J. Appl. Phycol., 2014, 24, 1619–1629.
16 R. J. Heath and C. O. Rock, J. Biolumin. Chemilumin.,
1996, 271, 1833–1836.
17 G. E. Schujman, S. Altabe and D. D. Mendoza, Mol.
Microbiol., 2008, 68, 987–996.
18 Z. Nie, C. Perretta, J. Lu, Y. Su, S. Margosiak, K. S. Gajiwala,
J. Gortez, V. Nikulin, K. M. Yager, K. Appelt and S. S. Chu,
J. Med. Chem., 2005, 48, 1596–1609.
19 L. Shi, R. Q. Fang, Z. W. Zhu, Y. Yang, K. Cheng, W. Q.
Zhong and H. L. Zhu, Eur. J. Med. Chem., 2010, 45,
4358–4364.
Experimental section
20 J. Lee, K. Jeong, J. Lee, D. Kang and Y. Kim, Bioorg. Med.
Chem., 2009, 17, 1506–1513.
21 J. Y. Lee, K. W. Jeong, S. Shin, J. U. Lee and Y. Kim, Eur. J.
Med. Chem., 2012, 47, 261–269.
All laboratory instruments, methods and data of this article
are in the ESI.‡
22 P. C. Lv, J. Sun, Y. Luo, Y. Yang and H. L. Zhu, Bioorg. Med.
Chem. Lett., 2010, 20, 4657–4660.
Acknowledgements
23 Y. Li, C. P. Zhao, H. P. Ma, M. Y. Zhao, Y. R. Xue, X. M.
Wang and H. L. Zhu, Bioorg. Med. Chem., 2013, 21,
3120–3126.
24 P. C. Lv, K. R. Wang, Y. Yang, W. J. Mao, J. Chen, J. Xiong
and H. L. Zhu, Bioorg. Med. Chem. Lett., 2009, 19,
6750–6754.
We thank Mr. Chong Zhang of Hohai University (Changzhou
213022, Jiangsu) for the synthesis of compounds F4–F10 in
this paper. This work was financed by the China Postdoctoral
Science Foundation and was supported by Public Science &
Technology Research Funds Projects of Ocean (No. 201505023).
25 A. J. M. Rasras, T. H. Al-Tel, A. F. Al-Aboudi and R. A. Al-
Qawasmeh, Eur. J. Med. Chem., 2010, 45, 2307–2313.
26 A. M. Kamel, M. A. Lobna, M. L. El-Sayed, I. H. Mohamed
and H. B. Rania, Bioorg. Med. Chem., 2006, 14, 8675–8682.
References
1 R. J. Heath and C. O. Rock, J. Biolumin. Chemilumin.,
1996, 271, 1833–1836.
This journal is © The Royal Society of Chemistry 2016
Med. Chem. Commun.