Published on Web 10/01/2008
Multiplexed Screening of Cellular Uptake of Gold
Nanoparticles Using Laser Desorption/Ionization Mass
Spectrometry
Zheng-Jiang Zhu, Partha S. Ghosh, Oscar R. Miranda, Richard W. Vachet,* and
Vincent M. Rotello*
Department of Chemistry, UniVersity of Massachusetts, Amherst, Massachusetts 01003
Received February 7, 2008; E-mail: rotello@chem.umass.edu (V.M.R.); rwvachet@chem.umass.edu (R.W.V.)
Abstract: Gold nanoparticles (AuNPs) are highly promising candidates as drug delivery agents into cells
of interest. We describe for the first time the multiplexed analysis of nanoparticle uptake by cells using
mass spectrometry. We demonstrate that the cellular uptake of functionalized gold nanoparticles with cationic
or neutral surface ligands can be readily determined using laser desorption/ionization mass spectrometry
of cell lysates. The surface ligands have “mass barcodes” that allow different nanoparticles to be
simultaneously identified and quantified at levels as low as 30 pmol. Using this method, we find that subtle
changes to AuNP surface functionalities can lead to measurable changes in cellular uptake propensities.
Introduction
Therapeutic nanocarriers carry drugs, genes, and/or imaging
fluorescence dyes that can be “read out” by a fluorescence
spectrometer. Simultaneous screening of the cellular uptake
of multiple particles with different surface functional groups,
however, is a challenge for existing approaches. Here, we
describe a new “mass barcoding” technique for monitoring the
cellular uptake of multiple functionalized gold nanoparticles
2
1
-4
agents into cells and tissues of interest.
Various materials,
5
6
such as polymeric micelles, mesoporous silica nanorods,
7
8-10
carbon nanotubes, and nanoparticles,
have been used as
therapeutic nanocarriers, as well as probes for following
intracellular processes. Effective use of nanoparticles as carriers
and intracellular probes requires the ability to monitor these
particles in cells, and several techniques are available for this
purpose. These techniques can be classified into two groups:
(
(
AuNPs) by using laser desorption/ionization mass spectrometry
LDI-MS).
Nanoparticles have been used in mass spectrometric analyses
primarily to facilitate the laser desorption/ionization of com-
1
4
pounds of interest. Tanaka et al. showed that cobalt particles
(
1) label-free imaging techniques such as luminescent quantum
1
0,11
12
(∼30 nm) suspended in glycerol facilitated the ionization of
dots imaging,
atomic force microscopy (AFM), and
1
5
16-22
23
24,25
1
3
proteins. Subsequently, Ag, Au,
C, and Si
nano-
transmission electron microscopy (TEM) and (2) barcoding
techniques such as those that encode nanoparticles with
materials have been demonstrated as LDI-MS matrixes with
different degrees of success. Meanwhile, some mass spectro-
metric work has also been devoted to the analysis of nanopar-
ticles themselves. For pure samples of gold nanoparticles,
(
1) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer,
R. Nat. Nanotechnol. 2007, 2, 751–760.
2
6,27
(
(
2) Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.;
Han, M. S.; Mirkin, C. A. Science 2006, 312, 1027–1030.
electrospray ionization mass spectrometry (ESI-MS)
and
3) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.;
Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science
(14) Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.;
Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.
(15) Owega, S.; Lai, E. P. C.; Bawagan, A. D. O. Anal. Chem. 1998, 70,
2360–2365.
2
005, 307, 538–544.
(
4) Han, G.; You, C.-C.; Kim, B.-J.; Turingan, R. S.; Forbes, N. S.; Martin,
C. T.; Rotello, V. M. Angew. Chem., Int. Ed. 2006, 45, 3165–3169.
(
5) Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Science 2003, 300,
(16) Novikov, A.; Caroff, M.; Della-Negra, S.; Lebeyec, Y.; Pautrat, M.;
Schultz, J. A.; Tempez, A.; Wang, H. Y. J.; Jackson, S. N.; Woods,
A. S. Anal. Chem. 2004, 76, 7288–7293.
6
15–618.
(
6) Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Angew. Chem.,
Int. Ed. 2005, 44, 5038–5044.
(17) McLean, J. A.; Stumpo, K. A.; Russell, D. H. J. Am. Chem. Soc. 2005,
127, 5304–5305.
(
7) Kam, N. W. S.; O’Connell, M.; Wisdom, J. A.; Dai, H. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 11600–11605.
(18) Castellana, E. T.; Russell, D. H. Nano Lett. 2007, 7, 3023–3025.
(19) Huang, Y. F.; Chang, H. T. Anal. Chem. 2006, 78, 1485–1493.
(20) Su, C. L.; Tseng, W. L. Anal. Chem. 2007, 79, 1626–1633.
(21) Nagahori, N.; Nishimura, S.-I. Chem.sEur. J. 2006, 12, 6478–6485.
(22) Spencer, M. T.; Furutani, H.; Oldenburg, S. J.; Darlington, T. K.;
Prather, K. A. J. Phys. Chem. C 2008, 112, 4083–4090.
(23) Sunner, J.; Dratz, E.; Chen, Y.-C. Anal. Chem. 1995, 67, 4335–4342.
(24) Wei, J.; Buriak, J. M.; Siuzdak, G. Nature 1999, 399, 243–246.
(25) Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Urit-
boonthai, W.; Apon, J.; Golledge, S. L.; Nordstrom, A.; Siuzdak, G.
Nature 2007, 449, 1033–1036.
(
8) Hong, R.; Han, G.; Fernandez, J. M.; Kim, B.-J.; Forbes, N. S.; Rotello,
V. M. J. Am. Chem. Soc. 2006, 128, 1078–1079.
(
9) Lewin, M.; Carlesso, N.; Tung, C.-H.; Tang, X.-W.; Cory, D.; Scadden,
D. T.; Weissleder, R. Nat. Biotechnol. 2000, 18, 410–414.
(
(
(
(
10) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat.
Biotechnol. 2004, 22, 969–976.
11) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat.
Biotechnol. 2003, 21, 47–51.
12) Yang, P. H.; Sun, X.; Chiu, J. F.; Sun, H.; He, Q. Y. Bioconjugate
Chem. 2005, 16, 494–496.
13) Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Nano Lett. 2006,
(26) Tracy, J. B.; Kalyuzhny, G.; Crowe, M. C.; Balasubramanian, R.; Choi,
J. P.; Murray, R. W. J. Am. Chem. Soc. 2007, 129, 6706–6707.
6
, 662–668.
10.1021/ja805392f CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 14139–14143 9 14139