invalidate the Nakanishi hypothesis. If hydroxyepoxide
cyclizations are involved in the biosynthesis, Coxon’s
experiment simply illustrates the challenge of emulating this
step in the laboratory. Accordingly, significant effort has been
directed toward this problem.
Scheme 1
Many strategies are based on the observations that acid-
catalyzed epoxide ring-opening reactions proceed with inver-
sion of configuration5 and that rate6 and regioselectivity7 are
very sensitive to the electronic nature of the epoxide
substituents.8,9
In this vein, Nicolaou used an alkenyl group to provide
π-stabilization of positive charge at the adjacent epoxide
carbon10 in pioneering studies that formed the basis of
landmark total syntheses of the brevetoxins11,12 and observed
a trend with alkenyl groups (Table 1, entries 3 and 4) that
was reminiscent of Coxon’s experiments. These four results
can be explained by a chair-like transition state (cf. Scheme
1), whereby the steric demand of a larger group in an axial
position disfavors endo cyclization. Similarly, Mori found
that an axial substituent other than H at the equivalent
position prevented analogous epoxysulfone cyclizations.2b,13
A trimethylsilyl (SiMe3) group emerged as an attractive
candidate in other parts of the strategy and because of the
regioselectivity of intermolecular epoxysilane ring-opening
reactions with oxygen-centered nucleophiles.14
The nature of X merits further discussion in the context
of the stereospecific hydroxyepoxide cyclization (3). A single
experiment reported by Coxon in 1973 raised perhaps the
most puzzling question of ladder polyether biosynthesis.4
Treatment of epoxide 1a with boron trifluoride etherate
(Et2O‚BF3) affords an 86:14 mixture of “5-exo” tetrahydro-
furan (THF, 3a) and “6-endo” tetrahydropyran (THP, 2a)
products (Table 1, entry 1).
(5) Except for epoxides with aromatic substituents (e.g., styrene oxides),
whose ring-opening reactions often display different mechanistic profiles.
Reviews: (a) Winstein, S.; Henderson, R. B. Ethylene and Trimethylene
Oxides. In Heterocyclic Compounds; Elderfield, R. C., Ed.; Wiley: New
York, 1950; Vol. 1. (b) Parker, R. E.; Isaacs, N. S. Chem. ReV. 1959, 59,
737-799. (c) Wohl, R. A. Chimia 1974, 28, 1-5.
(6) Brønsted, J. N.; Kilpatrick, M.; Kilpatrick, M. J. Am. Chem. Soc.
1929, 51, 428-461.
Table 1. Directing Group Effects in Hydroxyepoxide
Cyclizations (Eq 1)
(7) (a) Pritchard, J. G.; Long, F. A. J. Am. Chem. Soc. 1956, 78, 2667-
2670. (b) Addy, J. K.; Parker, R. E. J. Chem. Soc. 1965, 644-649.
(8) Catalytic antibody approach. THP: (a) Janda, K. D.; Shevlin, C. G.;
Lerner, R. A. Science 1993, 259, 490-493. (b) Na, J.; Houk, K. N.; Shevlin,
C. G.; Janda, K. D.; Lerner, R. A. J. Am. Chem. Soc. 1993, 115, 8453-
8454. Oxepane: (c) Janda, K. D.; Shevlin, C. G.; Lerner, R. A. J. Am.
Chem. Soc. 1995, 117, 2659-2660.
(9) Intramolecular (salen)Co(III)-catalyzed kinetic resolution: Wu, M.
H.; Hansen, K. B.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1997, 38, 22012-
2014.
entry epoxide
R1
R2
promoter
2:3
1a
1a
1b
1c
1d
1e
1f
H
Me
H
CHdCH2
SiMe3
Me
Me
H
Et2O‚BF3 14:86
Et2O‚BF3 e3:97
(10) (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K.; Somers, P. K.
J. Chem. Soc., Chem. Commun. 1985, 1359-1362. (b) Nicolaou, K. C.;
Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989,
111, 5330-5334. (c) See also: Nicolaou, K. C.; Prasad, C. V. C.; Somers,
P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5335-5340.
(11) (a) Brevetoxin B: Nicolaou, K. C.; Theodorakis, E. A.; Rutjes, F.
P. J. T.; Tiebes, J.; Sato, M.; Untersteller, E.; Xiao, X.-Y. J. Am. Chem.
Soc. 1995, 117, 1171-1172. (b) Nicolaou, K. C.; Rutjes, F. P. J. T.;
Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E.; Xiao, X.-Y. J.
Am. Chem. Soc. 1995, 117, 1173-1174. (c) Brevetoxin A: Nicolaou, K.
C.; Yang, Z.; Shi, G.-Q.; Gunzner, J. L.; Agrios, K. A.; Ga¨rtner, P. Nature
1998, 392, 264-269.
2a
3b
4b
5c
CHdCH2 (+)-CSA
H
Me
SiMe3
>98:2
(+)-CSA
44:56
Et2O‚BF3 >95:5
Et2O‚BF3 see text
6c,d
a See Coxon, ref 4. b See Nicolaou, refs 10a,b. c See Supporting Informa-
tion. d Major product: HO(CH2)4C(O)CH3.
(12) Total or formal synthesis of hemibrevetoxin: (a) Nicolaou, K. C.;
Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao, X.-Y. J. Am. Chem. Soc. 1992,
114, 7935-7936. (b) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato,
F.; Xiao, X.-Y.; Hwang, C.-K. J. Am. Chem. Soc. 1993, 115, 3558-3575.
(c) Kadota, I.; Park, J.-Y.; Koumura, N.; Pollaud, G.; Matsukawa, Y.;
Yamamoto, Y. Tetrahedron Lett. 1995, 36, 5777-5780. (d) Morimoto, M.;
Matsukura, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6365-6368. (e) Mori,
Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997, 119, 4557-4558.
(f) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Org. Chem. 1998, 63, 6200-
6209. (g) Kadota, I.; Yamamoto, Y. J. Org. Chem. 1998, 63, 6597-6606.
(h) Rainier, J. D.; Allwein, S. P.; Cox, J. M. J. Org. Chem. 2001, 66, 1380-
1386. (i) Holland, J. M.; Lewis, M.; Nelson, A. J. Org. Chem. 2003, 68,
747-753.
Also noteworthy is that the analogous cyclization with the
diastereomeric epoxide (1b) yields exclusively the exo
cyclization product (3b), demonstrating the sensitivity of such
cyclizations to epoxide substitution pattern (entry 2).
As a central tenet of Nakanishi’s proposal involves a series
of endo-selective epoxide-opening steps, how Nature over-
comes the apparently disfavored mode of cyclization remains
unknown. To be sure, these results do not necessarily
(13) (a) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996,
118, 8158-8159. (b) Mori, Y.; Yaegashi, K.; Furukawa, H. Tetrahedron
Lett. 1999, 40, 7239-7242.
(4) Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973,
26, 2521-2526.
2340
Org. Lett., Vol. 5, No. 13, 2003