A R T I C L E S
Ornelas et al.
None of these reactions, however, can be carried out easily in
vitro or in vivo. Furthermore, in some cases, nonquantitative
functionalization steps as well as functional group compatibility
have limited the success of these strategies. One synthetic
methodology that has the potential to overcome these limitations
is the use of “click chemistry”, which was introduced by
Sharpless and co-workers in 2001.26 Click reactions have to
meet several criteria including high yields, tolerance toward
functional groups, and virtually no side-reactions. Among the
“click” reactions, the Cu(I)-catalyzed alkyne azide 1,3-dipolar
cycloaddition (CuAAC) is the most popular.27 CuAAC was
successfully applied in different areas of materials chemistry28
including, but not limited to, polymers,29 nanoparticles,30
interlocked molecules,31-33 and dendrimers.34 In dendrimer
chemistry,CuAACwasusedfortheconvergent35 anddivergent36,37
synthesesofdendrimersaswellasintheirfunctionalization.34,38-43
The cytotoxicity of copper, however, is a potential drawback
of the CuAAC reaction for the synthesis and/or functionalization
of nanomaterials such as dendrimers for biomedical applications.
In cases where the final structure contains numerous functional
groups able to bind copper ions, the removal of the copper
catalyst can be problematic, limiting the use of copper-
contaminateddrugdeliverycarriersforpharmaceuticalpurposes.44,45
Therefore, copper-free “click” strategies that combine the
advantages of CuAAC without the use of a toxic transition metal
would be highly desirable for biomedical applications.44
Recently, an interesting copper-free reaction based on strained
cyclooctynes and azides was developed by Bertozzi and co-
workers for in vivo applications.46-48 This reaction goes back
to the late work of Georg Wittig who described the exothermic
cycloaddition of cyclooctyne with phenyl azide leading to the
corresponding triazole.49 The Bertozzi group has applied this
strain-promoted alkyne azide cycloaddition (SPAAC) in covalent
modifications of living systems50 and in vivo imaging of
membrane-associated glycans in developing Zebrafish using a
multicolor detection strategy.51 This reaction was then applied
by other groups to label peptides52 and lipids,53 to cross-linked
hydrogels,54 photodegradable star polymers,55 and to function-
alize polymers.56,57
In this contribution, we describe the limitation of copper-
based 1,3-dipolar cycloaddition functionalization strategies in
poly(amide)-based dendrons and present SPAAC as an efficient
copper-free strategy to functionalize dendrons and dendrimers.
We utilize poly(amido)-based dendrons that are known to be
biocompatible and therefore are an interesting starting point for
novel biomaterials. Furthermore, they can be multifunctionalized
through the use of either bifunctional dendrons40 or a trifunc-
tional core,58 bringing us closer to our long-term goal, the
construction of well-defined dendrimers for theranostics that
require several functionalities including (i) hydrophilic groups
such as PEG chains to increase water solubility and biocom-
patibility, (ii) imaging agents to monitor the trajectory of the
dendrimer in vitro or/and in vivo, (iii) targeting groups such as
folic acid, biotin, or specific antibodies, and (iv) the desired
drugs. Herein, we report the use of SPAAC as a highly
advantageous and efficient functionalization strategy toward
multifunctional dendrimers.
Results and Discussion
Synthesis of Poly(amide)-Based Dendrons and Dendrimers
with Azide Termini. The key to the development of a 1,3-dipolar
cycloaddition-based functionalization strategy in dendrimer
chemistry is the synthesis of the azide-containing dendrons and
dendrimers.59 We employed poly(amide)-based dendrons that
follow the 1f3 connectivity pioneered by Newkome.60 Den-
drons containing three and nine azide termini and a dendrimer
containing 18 azide termini were synthesized in high yields from
commercial dendrons nitrotriester 1 and aminotriester 5 as
shown in Scheme 1.
(26) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
(27) Meldal, M.; Tornoe, C. W. Chem. ReV. 2008, 108, 2952–3015.
(28) Iha, R. K.; Wooley, K. L.; Nystro¨m, A. M.; Burke, D. J.; Kade, M. J.;
Hawker, C. J. Chem. ReV. 2009, 109, 5620–5686.
Our strategy is based on building block 1. The deprotection
of the acid groups on 1 was carried out by stirring 1 in formic
acid at room temperature for 24 h, resulting in dendron triacid
(29) Meldal, M. Macromol. Rapid Commun. 2008, 29, 1016–1051.
(30) Boisselier, E.; Diallo, A. K.; Salmon, L.; Ruiz, J.; Astruc, D. Chem.
Commun. 2008, 4819–4821.
(31) Megiatto, J. D.; Schuster, D. I. J. Am. Chem. Soc. 2008, 130, 12872–
12873.
(32) Megiatto, J. D.; Schuster, D. I. Chem.-Eur. J. 2009, 15, 5444–5448.
(33) Dichtel, W. R.; Miljanic, O. S.; Spruell, J. M.; Heath, J. R.; Stoddart,
J. F. J. Am. Chem. Soc. 2006, 128, 10388–10390.
(47) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang,
P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl.
Acad. Sci. U.S.A. 2007, 140, 16793–16797.
(34) Franc, G.; Kakkar, A. Chem. Commun. 2008, 5267–5276.
(35) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
Voit, B.; Pyun, J.; Fre´chet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928–3932.
(48) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48, 6974–
6998.
(49) Wittig, G.; Krebs, A. Chem. Ber.-Recl. 1961, 94, 3260–3275.
(50) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004,
126, 15046–15047.
(36) Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Alves, S.; Astruc, D. Angew.
Chem., Int. Ed. 2007, 46, 872–877.
(51) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. Science
2008, 320, 664–667.
(37) Joralemon, M. J.; O’Reilly, R. K.; Matson, J. B.; Nugent, A. K.;
Hawker, C. J.; Wooley, K. L. Macromolecules 2005, 38, 5436–5443.
(38) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn,
M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun.
2005, 5775–5777.
(52) Kele, P.; Mezo, G.; Achatz, D.; Wolfbeis, O. S. Angew. Chem., Int.
Ed. 2009, 48, 344–347.
(53) Neef, A. B.; Schultz, C. Angew. Chem., Int. Ed. 2009, 48, 1498–1500.
(54) Meredith, C.; Patrick, K. Polym. Int. 2009, 58, 1190–1195.
(55) Johnson, J. A.; Baskin, J. M.; Bertozzi, C. R.; Koberstein, J. T.; Turro,
N. J. Chem. Commun. 2008, 3064–3066.
(39) Yoon, K.; Goyal, P.; Weck, M. Org. Lett. 2007, 9, 2051–2054.
(40) Goyal, P.; Yoon, K.; Weck, M. Chem.-Eur. J. 2007, 13, 8801–8810.
(41) Ornelas, C.; Aranzaes, J. R.; Salmon, L.; Astruc, D. Chem.-Eur. J.
2008, 14, 50–64.
(56) Lallana, E.; Fernandez-Megia, E.; Riguera, R. J. Am. Chem. Soc. 2009,
131, 5748–5750.
(42) Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc.
2008, 130, 4618–4627.
(57) Canalle, L. A.; Berkel, S. S. v.; Haan, L. T. d.; Hest, J. C. M. V. AdV.
Funct. Mater. 2009, 19, 3464–3470.
(43) Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.;
Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663–
3678.
(58) Ornelas, C.; Weck, M. Chem. Commun. 2009, 5710–5712.
(59) Molecules containing azide groups are potentially explosive and should
be handled with care. For more details about the sensitivity of these
materials, please see: Bra¨se, S.; Gil, C.; Knepper, K.; Zimmermann,
V. Angew. Chem., Int. Ed. 2005, 44, 5188–5240.
(44) Lutz, J. F. Angew. Chem., Int. Ed. 2008, 47, 2182–2184.
(45) van Dijk, M.; Rijkers, D. T. S.; Liskamp, R. M. J.; van Nostrum,
C. F.; Hennink, W. E. Bioconjugate Chem. 2009, 20, ????.
(46) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R.
ACS Chem. Biol. 2006, 1, 644–648.
(60) Newkome, G. R.; Moorefield, C. N.; Baker, G. R.; Behera, R. K.;
Escamillia, G. H.; Saunders, M. J. Angew. Chem., Int. Ed. Engl. 1992,
31, 917–919.
9
3924 J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010