Organic Letters
Letter
our knowledge, the Suzuki−Miyaura cross-coupling with
appropriate alkenyl derivatives has not been employed in the
construction of amphidinolide targets. Moreover, through the
use of the boron−Wittig reaction, ample material was available
to explore this strategy. During these studies, a number of
conditions were investigated to execute the Suzuki−Miyaura
cross-coupling. During the course of the optimization studies,
it was found that the amount of protodeboronation product
(19, Scheme 3) was affected by the amount of base. In
AUTHOR INFORMATION
Corresponding Author
■
James P. Morken − Department of Chemistry, Merkert
Chemistry Center, Boston College, Chestnut Hill,
Authors
Sheila Namirembe − Department of Chemistry, Merkert
Chemistry Center, Boston College, Chestnut Hill,
Massachusetts 02467, United States
Lu Yan − Department of Chemistry, Merkert Chemistry
Center, Boston College, Chestnut Hill, Massachusetts 02467,
United States
Scheme 3. Suzuki Coupling Reaction to Assemble the
C(1)−C(15) Fragment of Amphidinolide C
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors acknowledge the NIH for funding (NIGMS GM-
R35-127140). We also acknowledge Chenlong Zhang and Alex
Vendola for helpful experimental assistance.
REFERENCES
■
(1) Review: Kobayashi, J. J. Antibiot. 2008, 61, 271−284.
(2) Kobayashi, J.; Ishibashi, M.; Walchli, M. R.; Nakamura, H.;
Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Am. Chem. Soc. 1988, 110, 490−
̈
494.
addition, the amount of isomerized product 18 was influenced
by the nature of the base and light. After optimization, we
found that Pd(dppf)Cl2, K3PO4, THF/H2O, and reaction at 60
°C in the dark provided the desired cross coupling product in
52−61% isolated yield. During the course of the reaction, the
silyl ether group at C(7) was cleaved to generate alcohol 17 as
the product. This outcome is expected to be inconsequential to
the ultimate synthesis strategy.
In conclusion, we have accomplished the synthesis of the
C(1)−C(15) segment of amphidinolide C. The key steps
included a catalytic and enantioselective anti Krische
crotylation and a modified boron-Wittig olefination. Also
critical were the carbohydrate/DBU co-catalyzed diboration
and an organocatalytic anti aldol reaction. This report also
describes the first time a Suzuki−Miyuara cross-coupling has
been demonstrated to assemble two advanced intermediates
for the synthesis amphidinolide C. An important aspect of the
cross-coupling is that it should be done in the absence of light;
otherwise, isomerization of the product diene occurs.
Collectively, the knowledge gained from the syntheses
described above will assist in completion of amphidinolide C.
(3) Amphidinolide F: Kobayashi, J.; Tsuda, M.; Ishibashi, M.;
Shigemori, H.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Antibiot. 1991, 44,
1259−1251.
(4) Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota,
H.; Sasaki, T. J. Org. Chem. 1991, 56, 5221−5224.
(5) Usui, T.; Kazami, S.; Dohmae, N.; Mashimo, Y.; Konda, H.;
Tsuda, M.; Terasaki, A. G.; Ohashi, K.; Kobayashi, J.; Osada, H.
Chem. Biol. 2004, 11, 1269−1277.
(6) (a) Kubota, T.; Tsuda, M.; Kobayashi, J. Org. Lett. 2001, 3,
1363−1366. (b) Kubota, T.; Tsuda, M.; Kobayashi, J. Tetrahedron
2003, 59, 1613−1625.
(7) (a) Shotwell, J. B.; Roush, W. R. Org. Lett. 2004, 6, 3865−3868.
(b) Williams, D. R.; Fultz, M. W. J. Am. Chem. Soc. 2005, 127,
14550−14551. (c) Mohapatra, D. K.; Rahaman, M.; Chorghade, S.;
Gurjar, M. K. Synlett 2007, 18, 567−570. (d) Bates, R. H.; Shotwell, J.
B.; Roush, W. R. Org. Lett. 2008, 10, 4343−4346. (e) Armstrong, A.;
Pyrkotis, C. Tetrahedron Lett. 2009, 50, 3325−3328. (f) Mohapatra,
D. K.; Dasari, P.; Rahaman, H.; Pal, R. Tetrahedron Lett. 2009, 50,
6276−6279. (g) Paudyal, M. P.; Rath, N. P.; Spilling, C. D. Org. Lett.
́
̀
2010, 12, 2954−2957. (h) Ferrie, L.; Figadere, B. Org. Lett. 2010, 12,
4976−4979. (i) Roy, S.; Spilling, C. D. Org. Lett. 2010, 12, 5326−
5329. (j) Morra, N. A.; Pagenkopf, B. L. Org. Lett. 2011, 13, 572−575.
(k) Wu, D.; Forsyth, C. J. Org. Lett. 2013, 15, 1178−1181. (l) Clark,
J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1460−1463.
(m) Clark, J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1464−
1467. (n) Morra, N. A.; Pagenkopf, B. L. Tetrahedron 2013, 69,
8632−8644. (o) Morra, N. A.; Pagenkopf, B. L. Eur. J. Org. Chem.
2013, 2013, 756−760. (p) Williams, D. R.; De, R.; Fultz, M. W.;
ASSOCIATED CONTENT
■
sı
́
* Supporting Information
Fischer, D. A.; Morales-Ramos, A.; Rodríguez-Reyes, D. Org. Lett.
2020, 22, 4118−4122.
(8) Valot, G.; Mailhol, D.; Regens, S. C.; O’Malley, P. D.; Godineau,
The Supporting Information is available free of charge at
E.; Takikawa, H.; Philipps, P.; Fu
2398−2408.
̈
rstner, A. Chem. - Eur. J. 2015, 21,
Procedures, characterization, spectral and chromato-
(9) Mahapatra, S.; Carter, G. R. J. Am. Chem. Soc. 2013, 135,
10792−10803.
C
Org. Lett. XXXX, XXX, XXX−XXX