SCHEME 1. Previous Synthesis of Trisoxazolinesa
Modular Synthesis of Chiral Homo- and
Heterotrisoxazolines.† Improving the
Enantioselectivity in the Asymmetric
Michael Addition of Indole to Benzylidene
Malonate
Meng-Chun Ye, Bin Li, Jian Zhou, Xiu-Li Sun, and
Yong Tang*
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry,
354 Fenglin Lu, Shanghai 200032, China
Received March 23, 2005
a Reagents and conditions: (a) Na, MeOH, then BrCH2CO2Me,
0 °C to reflux, 46%; (b) Na, MeOH then CH3I, 0-40 °C, 80%; (c)
amino alcohol, 70 °C, solvent free; (d) PPh3, CCl4, Et3N, CH3CN,
25 °C.
able yields, the liberated methanol must be removed in
a vacuum after the reaction mixture is to room temper-
ature every 10 h. Thus, this method is very tedious and
also limited to the preparation of homo-trisoxazolines.
In this paper, we wish to report a conveniently modular
approach for the synthesis of a diverse set of chiral
trisoxazolines.
In the literature, there are two strategies for the
synthesis of trisoxazolines. One directly constructs the
three oxazolines from the corresponding carboxylic acids
or derivatives thereof. The advantage of this method is
to enable the synthesis of such ligands in relatively few
steps, and thus, this strategy is mostly adopted.2e-i
However, the direct synthesis suffered from poor yields
in the key step sometimes, and most of all, this method
is limited to the preparation of chiral homo-trisoxazolines
with identical oxazoline subunits, as in the case of the
A simple approach to a diverse set of chiral trisoxazolines
is described. Deprotonation of bisoxazolines 2, followed by
treatment of 2-chloromethyloxazolines 3, affords chiral
trisoxazolines, including chiral homo- and hetero-trisoxazo-
lines in good to high yields. These trisoxazolines are suc-
cessfully applied in the asymmetric reaction of indole with
benzylidene malonate, and ee’s up to 93% were obtained.
C2-symmetrical bisoxazolines (BOX) have proven to be
very powerful chiral ligands for a wide range of metal-
catalyzed reactions.1 Recently, several trisoxazolines have
been developed and applied successfully in some asym-
metric catalytic reactions2 and molecular recognition.3 In
a previous study on asymmetric catalysis, we designed
the pseudo-C3-symmetric4 trisoxazoline 1a by a sidearm
approach and found it very useful in the asymmetric
Michael-type indole alkylation,5 the Diels-Alder reaction,6a
the 1,3-diploar cycloaddition reaction,6b and the Kinugasa
reaction.6c The originally reported protocol for the syn-
thesis of chiral trisoxazoline 1 started from triester 4
(Scheme 1).5a In this protocol, the condensation of triester
4 with amino alcohols is performed under a nitrogen
atmosphere at 80 °C for 7-10 days. To achieve reason-
(2) For chiral trisoxazolines, see: (a) Kim, S.-G.; Seong, H. R.; Kim,
J.; Ahn, K. H. Tetrahedron Lett. 2004, 45, 6835. (b) Rocchetti, M. T.;
Fino, V.; Capriati, V.; Florio, S.; Luisi, R. J. Org. Chem. 2003, 68, 1394.
(c) Bellemin-Laponnaz, S.; Gade, L. H. Angew. Chem., Int. Ed. 2002,
41, 3473. (d) Kim, S.-G.; Ahn, K. H. Tetrahedron Lett. 2001, 42, 4175.
(e) Kohmura, Y.; Katsuki, T. Tetrahedron Lett. 2000, 41, 3941. (f)
Chuang, T.-H.; Fang, J.-M. Bolm, C. Synth. Commun. 2000, 30, 1627.
(g) Chan, T. H. Zheng, G. Z. Can. J. Chem. 1997, 75, 629. (h) Kawasaki,
K.; Katsuki, T. Tetrahedron 1997, 53, 6337. (i) Kawasaki, K.; Tsumura,
S.; Katsuki, T. Synlett 1995, 1245. For achiral trisoxazolines, see: (j)
Capriati, V.; Florio, S.; Luisi, R.; Rocchetti, M. T. J. Org. Chem. 2002,
67, 759. (k) Bellemin-Laponnaz, S.; Gade, L. H. Chem. Commun. 2002,
1286. (l) Sorrell, T. N.; Pigge, F. C.; White, P. S. Inorg. Chim. Acta
1993, 210, 87.
(3) (a) Kim, S.-G.; Kim, K.-H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J.
Am. Chem. Soc. 2003, 125, 13819. (b) Ahn, K. H.; Ku, H.-y.; Kim, Y.;
Kim, S.-G.; Kim, Y. K.; Son, H. S.; Ku, J. K. Org. Lett. 2003, 5, 1419.
(c) Kim, S.-G.; Kim, K.-H.; Jung, J.; Shin, S. K.; Ahn, K. H. J. Am.
Chem. Soc. 2002, 124, 591. (d) Kim, S.-G.; Ahn, K. H. Chem. Eur. J.
2000, 6, 3399. (e) Ahn, K. H.; Kim, S.-G.; Jung, J.; Kim, K.-H.; Kim,
J.; Chin, J.; Kim, K. Chem. Lett. 2000, 170.
(4) For a review on C3-symmetric chiral ligands in asymmetric
catalysis, see: Moberg, C. Angew. Chem., Int. Ed. 1998, 37, 248.
(5) (a) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030. (b).
Zhou, J.; Ye, M.-C.; Huang, Z.-Z. Tang, Y. J. Org. Chem. 2004, 69,
1309. (c) Zhou, J.; Ye, M.-C.; Tang, Y. J. Comb. Chem. 2004, 6, 301.
(d) Zhou, J.; Tang, Y. Chem. Commn. 2004, 432.
(6) (a) Zhou, J.; Tang, Y. Org. Biomol. Chem. 2004, 2, 429. (b) Huang,
Z.-Z.; Kang, Y.-B.; Zhou, J.; Ye, M.-C.; Tang, Y. Org. Lett. 2004, 6, 1677.
(c) Ye, M.-C.; Zhou, J.; Huang, Z.-Z. Tang, Y. Chem. Commun. 2003,
2554.
† Chiral homo-trisoxazolines refer to trisoxazolines with three
identical oxazoline subunits, while in chiral hetero-trisoxazolines, the
oxazoline subunits are different from each other (or at least one
oxazoline subunit is different from the other two).
(1) Reviews: (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000,
33, 325. (b) Jørgensen, K. A.; Johannsen, M.; Yao, S.; Audrain, H.;
Thorhauge, J. Acc. Chem. Res. 1999, 32, 605. (c) Pfaltz, A. J. Heterocycl.
Chem. 1999, 36, 1437. (d) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.
Tetrahedron: Asymmetry 1998, 9, 1. (e) Meyers, A. I. J. Heterocycl.
Chem. 1998, 35, 991. (f) Reiser, O. Nachr. Chem. Technol. Lab. 1996,
44, 744. (g) Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297. (h)
Pfaltz, A. Acc. Chem. Res. 1993, 26, 339. (i) Bolm, C. Angew. Chem.
1991, 103, 556.
10.1021/jo050595m CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/22/2005
6108
J. Org. Chem. 2005, 70, 6108-6110