Journal of the American Chemical Society
Page 4 of 5
Nanoparticles. Adv. Mater. 2018, 30, 1800202. (c) Wang, N.; Sun, Q.;
stimulate the interest of nanochemists toward the design of well-
defined sandwich composites MOF@APNC@MOF with perfect
properties and open up new horizons for nanomaterial studies.
Yu. J. Ultrasmall Metal Nanoparticles Confined within Crystalline
Nanoporous Materials: A Fascinating Class of Nanocatalysts. Adv.
Mater. 2019, 31, 1803966. (d) Q. Wang; D. Astruc. State of the Art
and Prospects in Metal–Organic Framework (MOF)-Based and MOF-
Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438-1511. (e) Wang,
C.; Tuminetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Moya, S.; Ruiz,
J.; Astruc, D. Hydrolysis of Ammonia-Borane over Ni/ZIF-8
Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen
Release. J. Am. Chem. Soc. 2017, 139, 11610–11615.
1
2
3
4
5
6
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website at DOI:
7
8
9
(6) (a) Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang,
Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.;
Chen, X.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp J. T.; Huo, F.
Imparting functionality to a metal–organic framework material by
controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
(b) Yang, Q.; Liu, W.; Wang, B.; Zhang, W.; Zeng, X.; Zhang, C.;
Qin, Y.; Sun, X.; Wu, T.; Liu, J.; Huo, F.; Lu, J. Regulating the spatial
distribution of metal nanoparticles within metal-organic frameworks
to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429. (c)
Wan, M.; Zhang, X.; Li, M.; Chen, B.; Yin, J.; Jin, H.; Lin, L.; Chen,
C.; Zhang, N. Hollow Pd/MOF Nanosphere with Double Shells as
Multifunctional Catalyst for Hydrogenation Reaction. Small 2017, 13,
1701395. (d) Chen, L.; Chen, H.; Luque, R.; Li, Y. Metalorganic
framework encapsulated Pd nanoparticles: towards advanced
heterogeneous catalysts. Chem. Sci. 2014, 5, 3708-3714.
Experimental procedures, crystallographic data, TEM, BET, UV-
vis., Raman, XPS, XRD, IR, and absorption spectra (PDF)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Authors
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(7) Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao,
H.; Tang, Z. Metal–organic frameworks as selectivity regulators for
hydrogenation reactions. Nature 2016, 3, 76-80.
We acknowledge financial support by the National Natural Science
Foundation of China ((21972001, 21871001), Anhui University,
University of Bordeaux and CNRS.
(8) (a) Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble
Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev.
2017, 117, 8208−8271. (b) Zeng, C.; Zhou, M.; Chen. Y.; Jin. R.
Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles:
Fundamentals and Opportunities. Chem. Rev. 2016, 116, 18, 10346-
10413. (c) Shen, H.; Deng, G.; Kaappa, S.; Tan, T.; Han, Y.; Malola,
S.; Lin, S.; Teo, B., Häkkinen, H., Zheng, N.; Highly Robust but
Surface-Active: N-Heterocyclic Carbene-Stabilized Au25 Nanocluster,
Angew. Chem. Int. Ed. 2019, 131, 17895-17899.
(9) Yuan, X.; Zhang, B.; Luo, Z.; Yao, Q.; Leong, D. T.; Yan, N.; Xie, J.
Balancing the Rate of Cluster Growth and Etching for Gram-Scale
Synthesis of Thiolate-Protected Au25 Nanoclusters with Atomic
Precision. Angew. Chem. Int. Ed. 2014, 126, 4711-4715
(10) Yu, S.; Li, S.; Huang, S.; Zeng, Z.; Cui, S.; Liu, Y. Covalently bonded
zeolitic imidazolate frameworks and polymers with enhanced
compatibility in thin film nanocomposite membranes for gas
separation. J. Membrane Sci. 2017, 540,155-164.
(11) Bachari, E.M.; Baud, G.; Jacquet M. Structural and optical properties
of sputtered ZnO films. Thin Solid Films 1999, 348, 165-172.
REFERENCES
(1) (a) Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Carbon capture
and conversion using metal-organic frameworks and MOF-based
materials. Chem. Soc. Rev. 2019, 48, 2783-2828. (b) Wang, X.; Li, Z.;
Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts
for Oxygen Reduction Reaction: From Nanoscale Engineering to
Atomic Design. Chem, 2019, 5, 1486–1511. (c) Liu, L.; Corma, A.
Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to
Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
(d) Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X.;
Catalysis with two-dimensional materials and their heterostructures.
Nat. Nanotech. 2016, 11, 218-230. (e) Samantaray, M. K.; D’Elia,
V.; Pump, E.; Falivene, L.; Harb, M.; Chikh, S. O.; Cavallo, L.; Basset,
J.-M. The Comparison between Single Atom Catalysis and Surface
Organometallic Catalysis. Chem. Rev. 2020, 120. 734-813.
(2) (a) Xu, L.; Liang, H.-W.; Yang, Y.; Yu S.-H. Stability and Reactivity:
Positive and Negative Aspects for Nanoparticle Processing. Chem.
Rev. 2018, 118, 3209-3250. (b) Yang, F.; Abadia, M.; Chen, C, Wang,
W.; Li, L.; Zhang, L.; Rogero, C.; Chuvilin, A.; Knez, M. Design of
active and stable oxygen reduction reaction catalysts by embedding
CoxOy nanoparticles into nitrogen-doped carbon. Nano Research, 2017,
10, 97-107.
(3) (a) Molnár, Á.; Papp, A. Catalyst recycling-A survey of recent
progress and current status. Coord. Chem. Rev. 2017, 349, 1-65. (b)
Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-
Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective
on Recycling Strategies. Chem. Rev. 2018, 118, 9843-9929. (c)
Sudarsanam, P.; Peeters, E.; Makshina, E. V.; Parvulescu,V. I.; Sels,
B. F. Advances in porous and nanoscale catalysts for viable biomass
conversion. Chem. Soc. Rev. 2019, 48, 2366-2421.
(4) (a) Yang, X.; Sun, J.-K.; Kitta, M.; Pag, H.; Xu, Q. Encapsulating
highly catalytically active metal nanoclusters inside porous organic
cages. Nat. Catal. 2018, 1, 214-220. (b) Ernst, J. B.; Muratsugu, S.;
Wang, F.; Tada, M.; Glorius, F. Tunable Heterogeneous Catalysis:
N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous
Ru/K-Al2O3 Catalysts to Tune Reactivity and Selectivity. J. Am.
Chem. Soc. 2016, 138, 10718-10721. (c) Du, Y.; Sheng, H.; Astruc,
D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient
Catalysts: A Bridge between Structure and Properties. Chem. Rev.
2019, 119, 526-622.
(12) Luo, Y.; Fan, S.; Yu, W.; Wu, Z.; Cullen, D. A.; Liang, C.; Shi, J.; Su,
C. Fabrication of Au25(SG)18-ZIF-8 Nanocomposites:
A Facile
Strategy to Position Au25(SG)18 Nanoclusters Inside and Outside ZIF-
8. Adv. Mater. 2018, 30, 1704576.
(13) Zanon, A.; Chaemchuen, S.; Mousavi, B.; Verpoort, F. Bibimaryam
Mousavia, Francis Verpoort, Zn-doped ZIF-67 as catalyst for the CO2
fixation into cyclic carbonates. J. CO₂ Util. 2017, 20, 282-291.
(14) (a) Maity, P.; Takano, Wakabayashi, T.; Tsukuda, T. Binding Motif of
Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 2013, 135,
9450-9457. (b) Li, G.; Jin, R. A Unique Activation Pathway for
Terminal Alkynes. J. Am. Chem. Soc. 2014, 136, 11347-11354.
(15) (a) Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao,
D.; Li, M.; Liu, X.; Zhang, S. Ionic-Liquid-Based CO2 Capture
Systems: Structure. Chem. Rev. 2017, 117, 9625-9673. (b) Hu, Y.; Liu,
Z.; Xu, J.; Huang, Y.; Song, Y. Evidence of Pressure Enhanced CO2
Storage in ZIF-8 Probed by FTIR Spectroscopy. J. Am. Chem. Soc.
2013, 135, 9287-9290.
(16) (a) Herves, P.; Perez-Lorenzo, M.; Liz-Marzan, LM.; Dzubiella, J.; Lu,
Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous
solution: model reactions. Chem. Soc. Rev. 2012, 41, 5577-5587. (b)
Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: a trusted model
reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51,
9410-9431. (c) Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D.
Basic concepts and recent advances in nitrophenol reduction by gold-
and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287,
114-136.
(5) (a) Yang, Q.; Xu, Q.; Jiang, H.-L. Metal-organic frameworks meet
metal nanoparticles: synergistic effect for enhanced catalysis. Chem.
Soc. Rev. 2017, 46, 4774-4808. (b) Wang, S.; McGuirk, C. M.;
d’Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal–Organic Framework
ACS Paragon Plus Environment