1J(PF4) ¼ 690 Hz, 4J(F1F4) ¼ 9 Hz, 4J(F2F4) ¼ 45 Hz,
3J(F3F4) ¼ 9 Hz].
References
22. dP : ꢀ25.6 [tddd, 3J(PF1) ¼ 13 Hz, 3J(PF2) ¼ 12 Hz,
2J(PF3) ¼ 71 Hz, 1J(PF4) ¼ 684 Hz], dF1 trans : ꢀ79.8 [dddt,
3J(PF1) ¼ 13 Hz, 2J(F1F2) ¼ 28 Hz, 3J(F1F3) ¼ 39 Hz,
4J(F1F4) ¼ 10 Hz], dF2 cis : ꢀ95.3 [dtdd, 3J(PF2) ¼ 12 Hz,
2J(F1F2) ¼ 28 Hz, 3J(F2F3) ¼ 110 Hz, 4J(F2F4) ¼ 45 Hz],
dF3 gem : ꢀ176.7 [dddt, 2J(PF3) ¼ 71 Hz, 3J(F1F3) ¼ 39 Hz,
1
D. M. Roddick and R. C. Schnabel, in Inorganic Chemistry:
Towards the 21st Century, ACS Symposium Series 555, ed.
J. S. Thrasher, ACS, Washington, D.C., 1994, ch. 27; W. Levason,
in The Chemistry of Organophosphorus Compounds, ed.
F. R. Hartley, Wiley, New York, 1990, vol. 1, ch. 15.
2
3
E. Zbiral, in Organophosphorus Reagents in Organic Synthesis, ed.
J. I. G. Cadogan, Academic Press, New York, 1979, p. 223.
F. W. Bennet, G. R. A. Brandt, H. J. Emeleus and R. N.
3
3J(F2F3) ¼ 110 Hz, J(F3F4) ¼ 9 Hz]. dF4 P–F : ꢀ60.3 [dddd,
´
Haszeldine, J. Chem. Soc., 1953, 1565; A. B. Burg, W. Mahler,
A. J. Bilbo, C. P. Haber and D. L. Herring, J. Am. Chem. Soc.,
1957, 79, 247.
1J(PF4) ¼ 684 Hz, 4J(F1F4) ¼ 10 Hz, 4J(F2F4) ¼ 45 Hz,
3J(F3F4) ¼ 9 Hz].
23. dP : ꢀ62.8 [tddd, 3J(PF1) ¼ 17 Hz, 3J(PF2) ¼ 13 Hz,
2J(PF3) ¼ 78 Hz, 1J(PF4) ¼ 707 Hz], dF1 trans : ꢀ80.1 [dddt,
3J(PF1) ¼ 17 Hz, 2J(F1F2) ¼ 29 Hz, 3J(F1F3) ¼ 33 Hz,
4J(F1F4) ¼ 8 Hz], dF2 cis : ꢀ95.7 [dtdd, 3J(PF2) ¼ 13 Hz,
2J(F1F2) ¼ 29 Hz, 3J(F2F3) ¼ 112 Hz, 4J(F2F4) ¼ 41 Hz],
dF3 gem : ꢀ178.2 [dddt, 2J(PF3) ¼ 78 Hz, 3J(F1F3) ¼ 33 Hz,
4
5
6
7
8
M. Fild, O. Glemser and G. Cristoph, Angew. Chem., Int. Ed.
Engl., 1964, 3, 801.
L. A. Wall, R. E. Donadio and W. J. Pummer, J. Am. Chem. Soc.,
1960, 82, 4846.
M. F. Ernst and D. M. Roddick, Inorg. Chem., 1989, 28,
1624.
R. G. Peters, B. L. Bennett, R. C. Schnabel and D. M. Roddick,
Inorg. Chem., 1997, 36, 5962.
See, for example: L. Maier, D. Seyferth, F. G. A. Stone and E. G.
Rochow, J. Am. Chem. Soc., 1957, 79, 5884; M. S. Holt, J. H.
Nelson and N. W. Alcock, Inorg. Chem., 1986, 25, 2288; L. P.
Barthel-Rosa, V. J. Catalano and J. H. Nelson, J. Chem. Soc.,
Chem. Commun., 1995, 1629; L. P. Barthel-Rosa, V. J. Catalano,
K. Maitra and J. H. Nelson, Organometallics, 1996, 15, 3924.
I. L. Knunyants, R. N. Sterlin, R. D. Yatsenko and L. N. Pinkina,
Isv. Akad. Nauk. SSSR. Otd. Khim. Nauk., 1960, 1991.
3
3J(F2F3) ¼ 112 Hz, J(F3F4) ¼ 7 Hz]. dF4 P–F : ꢀ50.1 [dddd,
1J(PF4) ¼ 707 Hz, 4J(F1F4) ¼ 8 Hz, 4J(F2F4) ¼ 41 Hz,
3J(F3F4) ¼ 7 Hz].
24. dP : ꢀ66.6 [tttt, 3J(PF1) ¼ 18 Hz, 3J(PF2) ¼ 15 Hz,
2J(PF3) ¼ 88 Hz, 1J(PF4) ¼ 739 Hz], dF1 trans : ꢀ75.5 [dddt,
3J(PF1) ¼ 18 Hz, 2J(F1F2) ¼ 18 Hz, 3J(F1F3) ¼ 39 Hz,
4J(F1F4) ¼ 9 Hz], dF2 cis : ꢀ92.7 [dtdd, 3J(PF2) ¼ 15 Hz,
2J(F1F2) ¼ 18 Hz, 3J(F2F3) ¼ 112 Hz, 4J(F2F4) ¼ 46 Hz],
dF3 gem : ꢀ180.6 [dddt, 2J(PF3) ¼ 88 Hz, 3J(F1F3) ¼ 39 Hz,
3J(F2F3) ¼ 112 Hz, 3J(F3F4) ¼ 6 Hz]. dF4 P–F : ꢀ56.5 [dttt,
1J(PF4) ¼ 739 Hz, 4J(F1F4) ¼ 9 Hz, 4J(F2F4) ¼ 46 Hz,
3J(F3F4) ¼ 6 Hz].
9
10 I. L. Knunyants, E. J. Perova and V. V. Tuleneva, Dokl. Akad.
Nauk. SSSR., 1959, 121, 576.
11 A. H. Cowley and M. W. Taylor, J. Am. Chem. Soc., 1969, 91,
1929.
12 H. G. Horn, R. Kontges, H. C. Marsmann and F. Kolkmann,
Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1978, 33, 1422.
13 J. Ichikawa, H. Jyono, S. Yonemaru, T. Okauchi and T. Minami,
J. Fluorine Chem., 1999, 97, 109.
14 K. K. Banger, R. P. Banham, A. K. Brisdon, W. I. Cross, G.
Damant, S. Parsons, R. G. Pritchard and A. Sousa-Pedares,
J. Chem. Soc., Dalton Trans., 1999, 427.
15 J. Burdon, P. L. Coe, I. B. Haslock and R. L. Powell, Chem.
Commun., 1996, 49.
16 K. K. Banger, A. K. Brisdon and A. Gupta, Chem. Commun.,
1997, 139.
17 See, for example: K. D. Berlin and G. B. Butler, J. Org. Chem.,
1961, 26, 2537; R. Rabinowitz and J. Pellon, J. Org. Chem., 1961,
26, 4623; D. J. Peterson, J. Org. Chem., 1966, 31, 950.
18 N. A. Barnes, A. K. Brisdon, M. J. Ellis and R. G. Pritchard,
J. Fluorine Chem., 2001, 112, 35.
25. dP : ꢀ61.0 [tdd, 3J(PF1) ¼ 5 Hz, 2J(PF2) ¼ 100 Hz,
1J(PF3) ¼ 697 Hz], dF1 cis : ꢀ154.8 [dtdd, 3J(PF1) ¼ 5 Hz,
3J(F1F2) ¼ 131 Hz, 4J(F1F3) ¼ 31 Hz, 2J(HF2) ¼ 74 Hz],
dF2 gem : ꢀ168.8 [dddt, 2J(PF2) ¼ 100 Hz, 3J(F1F2) ¼ 131
3
3
Hz, J(F2F3) ¼ 6 Hz, J(HF3) ¼ 7 Hz]. dF3 P–F : ꢀ48.9 [dddd,
4
3
1J(PF3) ¼ 697 Hz, J(F1F3) ¼ 31 Hz, J(F2F3) ¼ 6 Hz].
26. dP : ꢀ49.3 [td, 3J(PF1) ¼ 26 Hz, 1J(PF2) ¼ 703 Hz], dF1 cis
:
ꢀ154.8 [ddt, 3J(PF1) ¼ 26 Hz, 4J(F1F2) ¼ 8 Hz, 2J(HF2) ¼ 79
1
4
Hz], dF2 P–F : ꢀ39.4 [dd, J(PF2) ¼ 703 Hz, J(F1F2) ¼ 8 Hz].
=
OPPh2(CFBrCF2Br), 27. OPPh2(CF CF2) (0.235 g,
8.33 ꢂ 10ꢀ4 mol) was dissolved in chloroform (10 cm3) and a
solution of bromine in CHCl3 (2.12 cm3, 0.417 mol dmꢀ3
,
8.84 ꢂ 10ꢀ4 mol) was added. The solution was refluxed for
48 h, after which time the deep red solution had lightened to
yellow. The solution was concentrated in vacuo to yield
OPPh2(CFBrCF2Br), 27, as a yellow-brown oil. (0.350 g,
95%). (Found: C, 38.4; H, 2.6; P, 6.8%. C14H10F3Br2PO
19 J. M. Emsley, L. Phillips and V. Wray, Fluorine Coupling
Constants, Pergamon Press, Oxford, 1977.
20 R. H. Contreas, M. C. Ruiz de Azua and C. G. Giribet, Magn.
Reson. Chem., 1986, 24, 675; H. O. Gavarini and M. A. Natiello,
J. Comput. Chem., 1987, 8, 265; H. Poleschner, M. Heydenreich
and R. Radeglia, Magn. Reson. Chem., 1999, 37, 333.
21 Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data,
ed. J. C. Tebby, CRC Press, Boca Raton, FL, USA, 1991.
22 A. K. Brisdon, I. R. Crossley, R. G. Pritchard and J. E. Warren,
Inorg. Chem., 2002, 41, 4748.
23 M. Taillefer, H. J. Cristau, A. Fruchier and V. Vicente, J.
Organomet. Chem., 2001, 624, 307.
24 S. Martin, R. Sauvetre and J.-F. Normant, J. Organomet. Chem.,
1984, 264, 155.
25 R. Batchelor and T. Birchall, J. Am. Chem. Soc., 1982,
104, 674.
26 R. N. Haszeldine, D. R. Taylor and E. White, J. Fluorine Chem.,
1978, 11, 441.
27 C. De Tollenaere and L. Ghosez, Tetrahedron, 1997, 53,
17 127.
2
requires C, 38.0; H, 2.3; P, 7.0%). dP : 27.3 [dd, J(PFa) ¼ 61
3
0
Hz, J(PFb ) ¼ 3 Hz], dFa
:
ꢀ132.4 [ddd, (CFBrCF2Br),
2J(PFa) ¼ 61 Hz, 3J(FaFb) ¼ 23 Hz, J(FaFb ) ¼ 18 Hz],
3
0
dFb
:
ꢀ50.6 [dd, (CFBrCF2Br), 3J(FaFb) ¼ 23 Hz,
2
0
0
:
J(FbFb ) ¼ 170 Hz], dFb
ꢀ53.0 [ddd, (CFBrCF2Br),
3
3
2
0
0
0
J(PFb ) ¼ 3 Hz, J(FaFb ) ¼ 18 Hz, J(FbFb ) ¼ 170 Hz],
2
2
0
d
Ca : 104.4 [dddd, (CFBrCF2Br), J(CFb) ¼ J(CFb ) ¼ 32.8
Hz, 1J(CP) ¼ 63.7 Hz, 1J(CFa) ¼ 283.9 Hz], dCb : 120.5 [dddd,
(CFBrCF2Br), 2J(CP) ¼ 5.8 Hz, 2J(CFa) ¼ 32.8 Hz,
1
1
0
J(CFb) ¼ J(CFb ) ¼ 313.9 Hz], dC
:
127.5 [d,
ipso
1J(PC) ¼ 69.5 Hz], dC meta : 129.2 [dd, 3J(PC) ¼ 12.6 Hz,
5J(CF) ¼ 1.9 Hz], dC para : 132.7 [d, 4J(PC) ¼ 8.7 Hz], dC ortho
:
4
28 A. D. Beveridge, H. C. Clark and J. T. Kwon, Can. J. Chem.,
1966, 44, 179; M. Aktar and H. C. Clark, Can. J. Chem., 1968,
46, 633; M. Aktar and H. C. Clark, Can. J. Chem., 1968, 46, 2165.
29 S. A. Fontana, C. R. Davis, Y.-B. He and D. J. Burton,
Tetrahedron, 1996, 52, 37.
133.9 [dd,
2
J(PC) ¼ 7.7 Hz, J(CF) ¼ 2.9 Hz].
Acknowledgements
30 L. Xue, L. Lu, S. D. Pedersen, Q. Liu, R. M. Narake and D. J.
Burton, J. Org. Chem., 1997, 62, 1064.
We thank Ineos Fluor for providing samples of HFC-134a and
acknowledge the use of the EPSRC’s Chemical Database Ser-
vice at Daresbury. We also wish to thank the EPSRC for sup-
port of the UMIST NMR spectroscopy service (GR/L52246)
and FT-IR/Raman spectrometer (GR/M30135).
31 31P{1H} NMR Spectroscopy in Stereochemical Analysis, eds.
J. G. Verkade and L. D. Quin, VCH, New York, 1987.
´
32 H. J. Emeleus and J. M. Miller, J. Inorg. Nucl. Chem., 1966, 28,
662; R. C. Dobbie, L. F. Doty and R. G. Cavell, J. Am. Chem.
Soc., 1968, 90, 2015.
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
836
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 8 2 8 – 8 3 7