Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
COMMUNICATION
Orgainc & Biomolecular Chemistry
7
8
Fan, W. Wan, G. Ma, W. Gao, H. JiangD, OS.I:Z1h0.u10, 3J9. /HCa6oO,BC01h3e5m2J.
Commun., 2014, 50, 5733.
(a) Q. H. Deng, T. Bleith, H. Wadepohl, L. H. Gade, J. Am.
Chem. Soc., 2013, 135, 5356; (b) M. V. Vita, J. Waser, Org.
Lett., 2013, 15, 3246; (c) Y. Shinomoto, A. Yoshimura, H.
Shimizu, M. Yamazaki, V. V. Zhdankin, A. Saito, Org. Lett.,
2015, 17, 5212.
9
(a) F. C. Sequeira, B. W. Turnpenny, S. R. Chemler, Angew.
Chem., Int. Ed., 2010, 49, 6365; (b) B. Zhang, A. Studer, Org.
Lett., 2014, 16, 1790; (c) J. Li, M. Liu, Q. Li, H. Tian, Y. Shi, Org.
Biomol. Chem., 2014, 12, 9769; (d) Z. Li, C. Zhang, L. Zhu, C.
Scheme 5 Proposed reaction mechanism.
Liu, C. Li, Org. Chem. Front., 2014,
1, 100; (e) F. Wang, X. Qi,
Z. Liang, P. Chen, G. Liu, Angew. Chem., Int. Ed., 2014, 53
,
1881; (f) N. Zhu, F. Wang, P. Chen, J. Ye, G. Liu, Org. Lett.,
2015, 17, 3580.
chlorine radical from ClN3 to generate the final chloroazidation
product 3a
.
10 (a) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, M. S.
Formaneck, J. T. Bolz, Tetrahedron Lett., 1994, 35, 9677; (b)
A. P. Krasutsky, C. J. Kuehl, V. V. Zhdankin, Synlett, 1995,
1081; (c) V. V. Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J.
Simonsen, J. K. Woodward, B. Mismash, J. T. Bolz, J. Am.
Chem. Soc., 1996, 118, 5192.
In summary, we have developed an efficient and practical
approach to construct chloroazides via copper catalyzed three
component reaction of α,β‐unsaturated amides under mild
reaction conditions. The reaction takes advantage of the
Zhdankin’s reagent 2a and SOCl2 as azide and chlorine sources,
respectively. The synthetic utility of the current method is also
11 (a) B. Zhang, A. Studer, Org. Lett., 2013, 15, 4548; (b) L. Zhu,
H. Yu, Z. Xu, X. Jiang, L. Lin, R. Wang, Org. Lett., 2014, 16
,
demonstrated by
a
variety of synthetically useful
1562; (c) H. Yin, T. Wang, N. Jiao, Org. Lett., 2014, 16, 2302;
(d) R. Zhu, S. L. Buchwald, J. Am. Chem. Soc., 2015, 137, 8069;
(e) X.‐F. Xia, Z. Gu, W. Liu, H. Wang, Y. Xia, H. Gao, X. Liu, Y.‐
M. Liang, J. Org. Chem., 2015, 80, 290; (f) X. Sun, X. Li, S.
transformations. Further studies on the asymmetric version of
the reaction and applications of this multicomponent reaction
in organic synthesis are currently underway in our lab.
This work was supported by the National Natural Science
Foundation of China (grant no. 21402144, 21372181 and
21572168).
Song, Y. Zhu, Y.‐F. Liang, N. Jiao, J. Am. Chem. Soc., 2015, 137
6059; (g) G. Fumagalli, P. T. G. Rabet, S. Boyd, M. F. Greaney,
Angew. Chem., Int. Ed., 2015, 54, 11481.
,
12 H. Su, W. Li, Z. Xuan, W. Yu, Adv. Synth. Catal., 2015, 357, 64.
13 J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc., 2005,
127, 8294.
14 (a) M.‐Z. Lu, C.‐Q. Wang, T.‐P. Loh, Org. Lett., 2015, 17, 6110;
(b) Y. A. Yuan, D. F. Lu, Y. R. Chen, H. Xu, Angew. Chem., Int.
Ed., 2016, 55, 534.
15 L. Xu, X. Q. Mou, Z. M. Chen, S. H. Wang, Chem. Commun.,
2014, 50, 10676.
16 (a) Y. Yuan, T. Shen, K. Wang, N. Jiao, Chem. Asian J., 2013, 8,
Notes and references
1
(a) D. M. Huryn, M. Okabe, Chem. Rev., 1992, 92, 1745; (b) S.
Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem., Int.
Ed., 2005, 44, 5188; (c) S. Bräse, K. Banert, Organic Azides:
Syntheses and Applications, Wiley‐VCH, Weinheim, 2010; (d)
N. Jung, S. Bräse, Angew. Chem., Int. Ed., 2012, 51, 12169; (e)
E. T. Hennessy, T. A. Betley, Science, 2013, 340, 591; (f) Chiba,
S. Synlett, 2012, 21. (g) W. Song, S. I. Kozhushkov, L.
Ackermann, Angew. Chem., Int. Ed., 2013, 52, 6576.
2932; (b) X. H. Wei, Y. M. Li, A. X. Zhou, T. T. Yang, S. D. Yang,
Org. Lett., 2013, 15, 4158; (c) K. Matcha, R. Narayan, A. P.
Antonchick, Angew. Chem., Int. Ed., 2013, 52, 7985; (d) W.
Kong, E. Merino, C. Nevado, Angew. Chem., Int. Ed., 2014, 53
,
2
3
(a) E. M. Sletten, C. R. Bertozzi, Acc. Chem. Res., 2011, 44,
5078; (e) J. Qiu, R. Zhang, Org. Biomol. Chem., 2014, 12, 4329.
17 J. Xu, X. Li, Y. Gao, L. Zhang, W. Chen, H. Fang, G. Tang, Y.
Zhao, Chem. Commun., 2015, 51, 11240.
666; (b) P. M. E. Gramlich, C. T. Wirges, A. Manetto, T. Carell,
Angew. Chem., Int. Ed., 2008, 47, 8350; (c) G. Franc, A. K.
Kakkar, Chem. Soc. Rev., 2010, 39, 1536.
18 (a) S. Hajra, M. Bhowmick, D. Sinha, J. Org. Chem., 2006, 71
,
For selected reviews: (a) V. V. Zhdankin, Chem. Rev., 2008,
108, 5299; (b) F. Amblard, J. H. Cho, R. F. Schinazi, Chem.
Rev., 2009, 109, 4207; (c) M. Minozzi, D. Nanni, P. Spagnolo,
Chem.–Eur. J., 2009, 15, 7830; (d) T. G. Driver, Org. Biomol.
9237; (b) R. A. Valiulin, S. Mamidyala, M. G. Finn, J. Org.
Chem., 2015, 80, 2740; (c) H. Egami, T. Yoneda, M. Uku, T.
Ide, Y. Kawato, Y. Hamashima, J. Org. Chem., 2016, 81, 4020.
19 M. Fu, L. Chen, Y. Jiang, Z.‐X. Jiang, Z. Yang, Org. Lett., 2016,
18, 348.
Chem., 2010, 8, 3831; (e) C. I. Schilling, N. Jung, M. Biskup, U.
Schepers, S. Bräse, Chem. Soc. Rev., 2011, 40, 4840; (f) Y. Li,
D. P. Hari, M. V. Vita, J. Waser, Angew. Chem., Int. Ed. 2016,
55, 4436; (g) K. Wu, Y. Liang, Ning Jiao, Molecules, 2016, 21
352; (h) X. Huang, J. T. Groves, ACS Catal., 2016, , 751.
,
6
4
5
6
(a) P. A. S. Smith, C. D. Rowe, L. B. Bruner, J. Org. Chem.,
1969, 34, 3430; (b) W. Zhu, D. Ma, Chem. Commun., 2004,
888.
(a) C. Tao, X. Cui, J. Li, A. Liu, L. Liu, Q. Guo, Tetrahedron Lett.,
2007, 48, 3525; (b) Y. Li, L.‐X. Gao, F.‐S. Han, Chem.–Eur. J.,
2010, 16, 7969;
(a) A. Sharma, J. F. Hartwig, Nature, 2015, 517, 600; (b) T. G.
R. Pauline, F. Gabriele, B. Scott, F. G. Michael, Org. Lett.,
2016, 18, 1646; (c) Y. Wang, G.‐X. Li, G. Yang, G. He, G, Chen,
Chem. Sci., 2016, 7, 2679.
4 | Org. Biomol. Chem, 2016, 00, 1‐4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins