Paper
Dalton Transactions
15 J. Tauc, R. Grigorovici and A. Vancu, Optical properties and 30 J. Liang, P. Du, H. Guo, L. Sun, B. Li and X. Huang, High-
electronic structure of amorphous germanium, Phys. Status
Solidi A, 1996, 15, 627–637.
16 K. Binnemans, Interpretation of europium(III) spectra,
Coord. Chem. Rev., 2015, 295, 1–45.
17 F. Du, R. Zhu, Y. L. Huang, Y. Tao and H. J. Seo,
Luminescence and microstructures of Eu 3+-doped
Ca9LiGd2/3(PO4)7, Dalton Trans., 2011, 40, 11433–11440.
18 F. Fujishiro, R. Sekimoto and T. Hashimoto,
efficiency and thermal-stable Ca3La (GaO)3(BO3)4:Eu3+ red
phosphors excited by near-UV light for white LEDs, Dyes
Pigm., 2018, 157, 40–46.
31 D. Lu, X. Gong, Y. Chen, J. Huang, Y. Lin, Z. Luo and
Y. Huang, Synthesis and photoluminescence characteristics
of the LiGd3(MoO4)5:Eu3+ red phosphor with high color
purity and brightness, Opt. Mater. Express, 2018, 8, 259–
269.
Photoluminescence properties of CuLa1− xLnxO2 (Ln: 32 F. Meng, X. Zhang, S. Il Kim, Y. M. Yu and H. J. Seo,
lanthanide)—intense and peculiar luminescence from Ln3+
at the site with inversion symmetry, J. Lumin., 2013, 133,
217–221.
Luminescence properties of Eu3+ in gadolinium molybdate
β′-Gd2Mo3O12 phosphors, Optik, 2014, 125, 3578–3582.
33 M. Song, L. Wang, Y. Feng, H. Wang, X. Wang and D. Li,
Opt. Mater., 2018, 84, 284–291.
19 F. Fujishiro, M. Murakami, T. Hashimoto and
M. Takahashi, Orange luminescence of Eu3+-doped CuLaO2 34 P. Du and J. S. Yu, RSC Adv., 2015, 5, 60121–60127.
delafossite oxide, J. Ceram. Soc. Jpn., 2010, 18, 1217–1220.
20 X. X. Luo and W. H. Cao, Upconversion luminescence pro-
perties of Li+-doped ZnWO4:Yb,Er, J. Mater. Res., 2005, 20,
2078–2083.
35 R. Devi, R. Boddula, K. Singh, S. Kumar and
S. Vaidyanathan, New europium complexes and their use in
red light-emitting diodes and vapoluminescent sensors,
J. Inf. Disp., 2021, DOI: 10.1080/15980316.2021.1879960.
21 T. Jüstel, H. Nikol and C. Ronda, New developments in the 36 S. Long, J. Hou, G. Zhang, F. Huang and Y. Zeng, High
field of luminescent materials for lighting and displays,
Angew. Chem., Int. Ed., 1998, 37, 3084–3103.
22 V. Sivakumar and U. V. Varadaraju, An orange-red phos-
quantum efficiency red-emission tungstate based phosphor
Sr(La1−xEux)2Mg2W2O12 for WLEDs application, Ceram. Int.,
2013, 39, 6013–6017.
phor under near-UV excitation for white light emitting 37 R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu and
diodes, J. Electrochem. Soc., 2007, 154(1), J28–J31.
23 G. Blasse, Energy transfer in oxidic phosphors, Philips Res.
Rep., 1969, 24, 131–144.
M. A. Mitomo, A Simple, Efficient Synthetic Route to
Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-
Emitting Diodes, Chem. Mater., 2006, 18, 5578–
5583.
24 P. A. M. Berdowski and G. Blasse, The critical concen-
tration for quenching of the Eu3+ luminescence in some 38 R. J. Xie, N. Hirosaki, Y. Li and T. Takeda, Rare-earth acti-
Gd3+: Eu3+systems, J. Solid State Chem., 1986, 1, 86–88.
25 P. A. M. Berdowski and G. Blasse, J. Lumin., 1984, 29, 243–
260.
vated nitride phosphors: synthesis, luminescence and
applications, Materials, 2010, 3, 3777–3793.
39 A. B Kajjam, S. Giri and V. Sivakumar, Triphenylamine-
based donor–π–acceptor organic phosphors: synthesis,
characterization and theoretical study, Mater. Chem. Front.,
2017, 1(3), 512–520.
40 G.-H. Li, N. Yang, J. Zhang, J.-Y. Si, Z.-L. Wang, G.-M. Cai
and X.-J. Wang, The Non-Concentration-Quenching
Phosphor Ca3Eu2B4O12 for WLED Application, Inorg.
Chem., 2020, 59(6), 3894–3904.
26 G. S. Oflet, Intensities of crystal spectra of rare-earth ions,
J. Chem. Phys., 1962, 37, 511–520.
27 B. R. Judd, Optical absorption intensities of rare-earth
ions, Phys. Rev., 1962, 127, 750–761.
28 S. Dutta, S. Som and S. K. Sharma, Excitation spectra and
luminescence decay analysis of K+ compensated Dy3+
doped CaMoO4 phosphors, RSC Adv., 2015, 5, 7380–7387.
29 S. Kasturi and V. Sivakumar, Eu2+ luminescence in 41 R. Boddula, J. Tagare, K. Singh and S. Vaidyanathan, White
Ca3Si2O7 and spectral widening and tuning of Eu2+ emis-
sion color (orangish-red to green) by crystal chemical sub-
stitution, RSC Adv., 2016, 6(101), 98652–98662.
light emissive Europium complex and their versatile appli-
cations, Mater. Chem. Front., 2021, DOI: 10.1039/
D1QM00083G.
5000 | Dalton Trans., 2021, 50, 4986–5000
This journal is © The Royal Society of Chemistry 2021