Doxazolidine Cross-links DNA
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 24 7657
colony formation was determined using a crystal violet staining
assay measuring optical density at 588 and 770 nm.
Hydrolysis of DoxF in RPMI medium or 100% human serum
was performed the same as above except drug hydrolysis was
performed at 1 µM equiv and drug treatment was at 100 nM
equiv. During drug treatment, the medium was either 90%
RPMI/10% FBS or 90% RPMI/10% human serum. During cell
growth, the medium was 90% RPMI/10% FBS.
(18) Cogan, P. S.; Fowler, C. R.; Post, G. C.; Koch, T. H. Doxsali-
form: A novel N-Mannich base prodrug of a doxorubicin
formaldehyde conjugate. Lett. Drug Des. Dis. 2004, 1, 247-255.
19) Swift, L. P. C., S. M.; Rephaeli, A.; Nudelman, A.; Phillips, D.
R. Activation of adriamycin by the pH-dependent formaldehyde-
releasing prodrug hexamethylenetetramine. Mol. Cancer Ther.
2003, 2, 189-198.
(20) Nudelman, A.; Levovich, I.; Cutts, S. M.; Phillips, D. R. The role
of intracellularly released formaldehyde and butyric acid in the
anticancer activity of acyloxyalkyl esters. J. Med. Chem. 2005,
(
4
8, 1042-1054.
Acknowledgment. The authors thank the U.S.
Army Prostate Cancer Research Program (Grant No.
DAMD17-01-1-0046) and the National Cancer Institute
of the NIH (Grant No. CA-92107) for financial support,
the National Science Foundation for help with the
purchase of NMR equipment (Grant No. CHE-0131003),
Dr. William Wells for MCF-7/Adr cells, Drs. Renata
Pasqualini and Janet Price for MDA-MB-435 cells, and
Dr. Andrew Kraft for DU-145 cells.
(
21) Cutts, S. M.; Nudelman, A.; Rephaeli, A.; Phillips, D. R. The
power and potential of doxorubicin-DNA adducts. IUBMB Life
2005, 5, 73-81.
(
22) Loudon, G. M.; Almond, M. R.; Jacob, J. N. Mechanism of
hydrolysis of N-(1-aminoalkyl) amides. J. Am. Chem. Soc. 1981,
1
03, 4508-4515.
(23) Wani, M. C.; Taylor, D. J.; Wall, M. E.; McPhail, A. T.; Onan,
K. D. Antitumor agents. XIII. Isolation and absolute configura-
tion of Carminomycin I from Streptosporangium sp. J. Am.
Chem. Soc. 1975, 97, 5955-5957.
(24) Pettit, G. R.; Einck, J. J.; Herald, C. L.; Ode, R. H.; Von Dreele,
R. B.; et al. The structure of carminomycin I. J. Am. Chem. Soc.
1975, 97, 7387-7389.
Supporting Information Available: Crystallographic
(
25) Mimnaugh, E. G.; Fairchild, C. R.; Fruehauf, J. P.; Sinha, B. K.
Biochemical and pharmacological characterization of MCF-7
drug-sensitive and Adr multidrug-resistant human breast tumor
xenografts in athymic mice. Biochem. Pharmacol. 1991, 42, 391-
information file for DoxF (in CIF format), HPLC data of Doxaz
1
monitored at 280 and 480 nm, and H NMR spectra for Doxaz
and DoxF establishing the state of purity. This material is
available free of charge via the Internet at http://pubs.acs.org.
4
02.
(
(
26) Lampidis, T. J.; Kolonias, D.; Podona, T.; Isreal, M.; Safa, A. R.;
et al. Circumvention of P-GP MDR as a function of anthracycline
lipophilicity and charge. Biochemistry 1997, 36, 2679-2685.
27) Crooke, S. T.; DuVernay, V. H. Fluorescence Quenching of
Anthracyclines by Subcellular Fractions. Anthracyclines Current
Status and New Developments; Academic Press: New York,
References
(
1) DeVita, V. T.; Hellman, S.; Rosenberg, S. A. Cancer: Principles
and Practice of Oncology, 6th ed.; Lippincott, Williams and
Wilkins: Philadelphia, PA, 2001.
(
2) Gewirtz, D. A. A critical evaluation of the mechanisms of action
proposed for the antitumor effects of the anthracycline antibiot-
ics adriamycin and daunorubicin. Biochem. Pharmacol. 1999,
1
980; pp 151-155.
(
(
28) Taatjes, D. J.; Fenick, D. J.; Koch, T. H. Epidoxoform:
a
hydrolytically more stable anthracycline-formaldehyde conju-
gate, cytotoxic to resistant tumor cells. J. Med. Chem. 1998, 41,
57, 727-741.
(
3) Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L.
Anthracyclines: molecular advances and pharmacologic develop-
ments in antitumor activity and cardiotoxicity. Pharmacol. Rev.
1
306-1314.
29) Taatjes, D. J.; Koch, T. H. Growth inhibition, nuclear uptake,
and retention of anthracycline-formaldehyde conjugates in
prostate cancer cells relative to clinical anthracyclines. Anti-
cancer Res. 1999, 19, 1201-1208.
2
004, 56, 185-229.
(
(
(
4) Thigpen, J. T. Innovations in anthracycline therapy: overview.
Community Oncol. 2005, 2 (S1), 3-7.
5) Arcamone, F. Doxorubicin Anticancer Antibiotics; Academic
Press: New York, 1981; pp 246-254.
(30) Taylor, R.; Kennard, O. The molecular structures of nucleosides
and nucleotides. 1. The influence of protonation on the geom-
etries of nucleic constituents. J. Mol. Struct. 1982, 78, 1-28.
(31) Rajski, S. R.; Williams, R. M. DNA interstrand cross-linking
agents as antitumor drugs. Chem. Rev. 1998, 98, 2723-2796.
(32) Norman, D.; Live, D.; Sastry, M.; Lipman, R.; Hingerty, B. E.;
et al. NMR and computational characterization of mitomycin
cross-linked to adjacent deoxyguanosines in the minor groove
of the d(TACGTA)-d(TACGTA) duplex. Biochemistry 1990, 29,
2861-2875.
6) Chaires, J. B.; Satyanarayana, S.; Suh, D.; Fokt, I.; Przewloka,
T.; et al. Parsing the free energy of anthracycline antibiotic
binding to DNA. Biochemistry 1996, 35, 2047-2053.
7) Cullinane, C.; van Rosmalen, A.; Phillips, D. R. Does adriamycin
induce interstrand cross-links in DNA? Biochemistry 1994, 33,
(
(
(
4632-4638.
8) Cullinane, C.; Cutts, S. M.; van Rosmalen, A.; Phillips, D. R.
Formation of adriamycin-DNA adducts in vitro. Nucleic Acids
Res. 1994, 22, 2296-2303.
(33) Taatjes, D. J.; Fenick, D. J.; Koch, T. H. Nuclear targeting and
nuclear retention of anthracycline-formaldehyde conjugates
implicates DNA covalent binding in the cytotoxic mechanism of
anthracyclines. Chem. Res. Toxicol. 1999, 12, 588-596.
9) Skladanowski, A.; Konopa, J. Interstrand DNA crosslinking
induced by anthracyclines in tumour cells. Biochem. Pharmacol.
1
994, 47, 2269-2278.
(
(
(
10) Wang, A. H. J.; Gao, Y. G.; Liaw, Y. C.; Li, Y. K. Formaldehyde
cross-links daunorubicin and DNA efficiently: HPLC and X-ray
diffraction studies. Biochemistry 1991, 30, 3812-3815.
(
34) Cogan, P. S.; Koch, T. H. Rational design and synthesis of
androgen receptor targeted non-steroidal anti-androgen ligands
for the tumor specific delivery of a doxorubicin-formaldehyde
conjugate. J. Med. Chem. 2003, 46, 5258-5270.
35) Cogan, P. S.; Koch, T. H. Studies of targeting and intracellular
trafficking of an anti-androgen-doxorubicin-formaldehyde con-
jugate in PC-3 prostate cancer cells bearing androgen receptor-
GFP chimera. J. Med. Chem., submitted.
11) Leng, F.; Savkur, R.; Fokt, I.; Przewloka, T.; Priebe, W.; et al.
Base specific and regiospecific chemical cross-linking of dauno-
rubicin to DNA. J. Am. Chem. Soc. 1996, 118, 4731-4738.
12) Taatjes, D. J.; Gaudiano, G.; Resing, K.; Koch, T. H. A redox
pathway leading to the alkylation of DNA by the anthracycline,
anti-tumor drugs, adriamycin and daunomycin. J. Med. Chem.
(
(
36) Burke, P. J.; Koch, T. H. Design, synthesis, and biological
evaluation of doxorubicin-formaldehyde conjugates targeted to
breast cancer cells. J. Med. Chem. 2004, 47, 1193-1206.
37) Burke, P. J.; Kalet, B. T.; Koch, T. H. Antiestrogen binding site
1
997, 40, 1276-1286.
(
13) Zeman, S. M.; Phillips, D. R.; Crothers, D. M. Characterization
of covalent adriamycin-DNA adducts. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 11561-11565.
(
(
AEBS) and estrogen receptor (ER) mediate uptake and distri-
(
14) Podell, E. R.; Harrington, D. J.; Taatjes, D. J.; Koch, T. H. Crystal
structure of epidoxorubicin-formaldehyde virtual crosslink of
DNA and evidence for its formation in human breast-cancer
cells. Acta Crystallogr. 1999, D55, 1516-1523.
bution of 4-hydroxytamoxifen-targeted doxorubicin-formalde-
hyde conjugate in breast cancer cells. J. Med. Chem., submitted.
38) Burkhart, D. J.; Kalet, B. T.; Koch, T. H. Doxorubicin-
formaldehyde conjugates targeting alpha-v beta-3 integrin. Mol.
Cancer Ther. 2004, 3, 1593-1604.
(
(
15) Taatjes, D. J.; Gaudiano, G.; Koch, T. H. Production of formal-
dehyde and DNA-adriamycin or -daunomycin adducts, initi-
ated through redox chemistry of DTT/iron, xanthine oxidase/
NADH/iron, or glutathione/iron. Chem. Res. Toxicol. 1997, 10,
(39) Cutts, S. M.; Rephaeli, A.; Nudelman, A.; Hmelnitsky, I.; Phillips,
D. R. Molecular basis for the synergistic interaction of adria-
mycin with the formaldehyde-releasing prodrug pivaloyloxym-
ethyl butyrate (AN-9). Cancer Res. 2001, 61, 8194-8202.
(40) Dernell, W. S.; Powers, B. E.; Taatjes, D. J.; Cogan, P.; Gaudiano,
G.; et al. Evaluation of the epidoxorubicin-formaldehyde con-
jugate, epidoxoform, in a mouse mammary carcinoma model.
Cancer Invest. 2002, 20, 712-723.
953-961.
(
16) Kato, S.; Burke, P. J.; Fenick, D. J.; Taatjes, D. J.; Bierbaum,
V. M.; et al. Mass spectrometric measurement of formaldehyde
generated in breast cancer cells upon treatment with anthra-
cycline antitumor drugs. Chem. Res. Toxicol. 2000, 13, 509-516.
17) Fenick, D. J.; Taatjes, D. J.; Koch, T. H. Doxoform and dauno-
form: Anthracycline-formaldehyde conjugates toxic to resistant
tumor cells. J. Med. Chem. 1997, 40, 2452-2461.
(
JM050678V