COMMUNICATIONS
[5] J. L. Battiste, H. Mao, N. S. Rao, R. Tan, D. R. Muhandiram, L. E.
Kay, A. D. Frankel, J. R. Williamson, Science 1996, 273, 1547 ± 1551.
[6] R. N. De Guzman, Z. R. Wu, C. C. Stalling, L. Pappalardo, P. N.
Borer, M. F. Summers, Science 1998, 279, 384 ± 388.
[7] D. Fourmy, M. I. Recht, S. C. Blanchard, J. D. Puglisi, Science 1996,
274, 1367 ± 1371.
Controlled Arrangement of Supramolecular
Metal Coordination Arrays on Surfaces**
Alexander Semenov, Joachim P. Spatz, Martin Möller,*
Jean-Marie Lehn,* Bernd Sell, Dieter Schubert,*
Christian H. Weidl, and Ulrich S. Schubert*
[8] F. Hamy, V. Brondani, A. Flörsheimer, W. Stark, M. J. J. Blommers, T.
Klimkait, Biochemistry 1998, 37, 5086 ± 5095.
[9] J.-M. Lehn, P. Vierling, R. C. Hayward, J. Chem. Soc. Chem. Commun.
1979, 296 ± 298.
[10] A. V. Eliseev, M. I. Nelen, J. Am. Chem. Soc. 1997, 119, 1147 ± 1148.
[11] T. Schrader, Chem. Eur. J. 1997, 3, 1537 ± 1541.
[12] K. Madan, D. J. Cram, J. Chem. Soc. Chem. Commun. 1975, 427 ± 428.
[13] E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski,
S. S. Moore, D. J. Cram, J. Am. Chem. Soc. 1977, 99, 2564 ± 2571.
[14] J. A. A. de Boer, J. W. H. M. Uiterwijk, J. Geevers, S. Harkema, D. N.
Reinhoudt, J. Org. Chem. 1983, 48, 4821 ± 4830.
[15] J. W. H. M. Uiterwijk, C. J. van Staveren, D. N. Reinhoudt, H. J.
den Hertog, Jr., L. Kruise, S. Harkema, J. Org. Chem. 1986, 51,
1575 ± 1587.
The arrangement of special functional units with nanometer
dimensions into defined molecular architectures on surfaces is
one of the major goals in supramolecular, polymer, and
material science in view of the potential applications of these
systems in nanotechnology with regards to molecular infor-
mation storage devices or functional surfaces.[1] This requires
a precise control of the structures at very different length
scales ranging from molecular size to micrometers. One
promising approach for the construction of nanometric size
objects comes from supramolecular chemistry.[1] It has been
demonstrated in the last few years that information stored in
molecular components can be read out by noncovalent
interactions, for example, hydrogen-bonding[2] or metal-
ligand[3] interactions, to assemble the final well-ordered
architectures. Recently a new class of coordination arrays
presenting a two-dimensional [2 Â 2] grid-type architecture
based on transition metal ions with octahedral coordination
geometry was described (Figure 1a ).[4, 5] These complexes
were found to present interesting electronic, magnetic, and
structural properties, such as electronic interactions between
the metal centers and an antiferromagnetic transition at low
temperatures[5, 6] (Figure 1b). They are formed by the sponta-
neous self-assembly of 4,6-bis(2',2''-bipyridyl-6-yl)pyrimidine
ligands[4] (or its functionalized derivatives[7]) and suitable
metal ions such as CoII (Figure 1a).[5]
[16] F. J. B. Kremer, G. Chiosis, J. F. J. Engbersen, D. N. Reinhoudt, J.
Chem. Soc. Perkin Trans. 2 1994, 1994, 677 ± 681.
[17] T. W. Bell, J. Liu, J. Am. Chem. Soc. 1988, 110, 3673 ± 3674.
[18] W. F. van Straaten-Nijenhuis, F. de Jong, D. N. Reinhoudt, R. P.
Thummel, T. W. Bell, J. Liu, J. Membr. Sci. 1993, 82, 277 ± 283.
[19] T. W. Bell, J. Liu, Angew. Chem. 1990, 102, 931 ± 933; Angew. Chem.
Int. Ed. Engl. 1990, 29, 923 ± 925.
[20] T. W. Bell, V. J. Santora, J. Am. Chem. Soc. 1992, 114, 8300 ± 8302.
[21] T. W. Bell, Z. Hou, Y. Luo, M. G. B. Drew, E. Chapoteau, B. P. Czech,
A. Kumar, Science 1995, 269, 671 ± 674.
[22] T. W. Bell, Z. Hou, S. C. Zimmerman, P. A. Thiessen, Angew. Chem.
1995, 107, 2321 ± 2324; Angew. Chem. Int. Ed. Engl. 1995, 34, 2163 ±
2165.
[23] T. W. Bell, Z. Hou, Angew. Chem. 1997, 109, 1601 ± 1603; Angew.
Chem. Int. Ed. Engl. 1997, 36, 1536 ± 1538.
[24] F. W. Vierhapper, E. L. Eliel, J. Org. Chem. 1975, 40, 2729 ± 2734.
[25] J. J. Pappas, W. P. Keaveney, E. Gancher, M. Berger, Tetrahedron Lett.
1966, 4273 ± 4278.
[26] H. Bredereck, G. Simchen, H. Traut, Chem. Ber. 1967, 100, 3664 ± 3670.
Besides the design and synthesis of ªisolatedº grid units, the
ordered and stable arrangement of such metallo-supramolec-
ular architectures on surfaces or in thin films is of special
[27] Crystal data for [4 ´ 2EtNHC(NH2)2 ]: C30H42N10O8, Mr 670.74,
Å
triclinic, space group P1, a 10.974(11), b 11.412(10), c
14.128(15) , a 70.56(1), b 79.36(1), g 88.51(1)8, U 1639 3,
Z 2, 1 1.359 Mgm 3, F(000) 712. A total of 5828 independent
reflections was measured on a Marresearch Image Plate by using
MoKa radiation. Distances are O(18) N(36) 2.829(6), O(18) O(54)
2.710(7), O(21) N(35) 2.871(5), O(21) N(45) 2.912(5), O(22) N(46)
2.848(6), N(33) O(54) 3.037(7), N(43) O(52) 2.886(7), N(46) O(51)
2.890(7), O(51) O(52) 3.167(10), N(35) N(15) 3.060(5), N(36) N(16)
2.999(4) . Individual host and guest moieties are connected by
intermolecular hydrogen bonds between O(19) and N(45) (symmetry
element 1 x, y, 2 z), distance 2.936(6) , to form a helix. Other
hydrogen bonds involving water molecules are also present in the unit
[*] Prof. Dr. M. Möller, Dr. A. Semenov, Dr. J. P. Spatz
Organische Chemie III/Makromolekulare Chemie der Universität
D-89081 Ulm (Germany)
Fax: (49)731-502-2883
Prof. Dr. J.-M. Lehn
Â
Laboratoire de Chimie Supramoleculaire, ISIS
Â
Universite Louis Pasteur
cell (O(18) ´´´ O(52) (2 x, y,
2
z) 2.882(8), O(19) ´´´ O(53)
4 Rue Blaise Pascal, F-67000 Strasbourg (France)
Fax: (33)388411020
(x,y,1 z) 2.753(6), O(19) ´´´ O(51) (x 1, y 1, z) 2.936(7), O(21)
´´´ O(53) (1 x, y, 1 z) 2.817(6) ), as are water± water hydrogen
bonds. Crystallographic data (excluding structure factors) for the
structures reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publica-
tion no. CCDC-103868. Copies of the data can be obtained free of
charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.
ac.uk).
Prof. Dr. D. Schubert, B. Sell
Institut für Biophysik der Universität
Theodor-Stern-Kai 7, Haus 74
D-60590 Frankfurt am Main (Germany)
Fax: (49)69-6301-5838
Dr. U. S. Schubert, C. H. Weidl
[28] H. P. Stephenson, H. Sponer, J. Am. Chem. Soc. 1957, 79, 2050 ± 2056.
[29] S. M. Ngola, P. C. Kearney, S. Mecozzi, K. Russell, D. A. Dougherty, J.
Am. Chem. Soc. 1999, 121, 1192 ± 1201.
Lehrstuhl für Makromolekulare Stoffe
der Technischen Universität München
Lichtenbergstrasse 4, D-85747 Garching (Germany)
Fax: (49)89-289-13562
[**] We thank the Deutsche Forschungsgemeinschaft (DFG), the Bayer-
isches Staatsministerium für Unterricht, Kultus, Wissenschaft und
Kunst, and the Stiftung Stipendien-Fonds des Verbandes der Chem-
ischen Industrie e.V. for financial support.
Angew. Chem. Int. Ed. 1999, 38, No. 17
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3817-2547 $ 17.50+.50/0
2547