European Journal of Pharmaceutical Sciences (2021)
Update date:2022-08-17
Topics:
Siqueira, Marina Micaele Rodrigues
Freire, Paulo de Tarso Cavalcante
Cruz, Beatriz Gon?alves
de Freitas, Thiago Sampaio
Bandeira, Paulo Nogueira
Silva dos Santos, Hélcio
Nogueira, Carlos Emidío Sampaio
Teixeira, Alexandre Magno Rodrigues
Pereira, Raimundo Luiz Silva
Xavier, Jayze da Cunha
Campina, Fábia Ferreira
dos Santos Barbosa, Cristina Rodrigues
Neto, José Bezerra de Araújo
da Silva, Maria Milene Costa
Siqueira-Júnior, José Pinto
Douglas Melo Coutinho, Henrique
Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4′-aminophenyl)-3-(phenyl)?prop-2-en-1-one (APCHAL), and (2E)-1-(4′-aminophenyl)-3-(4-chlorophenyl)?prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.
View MoreTianjin Jingye Fine Chemicals Co., Ltd.
Contact:+86-15722078107; +86-22-26911407
Address:Bohua Fine Chemicals Base of Petrochemical Industry Park, Nanhuan Road, Dagang District, Tianjin, 300271, P. R. China
ShenZhen InnoSyn Biotech Co.,Ltd
website:http://www.innosyns.com
Contact:+86-755-28351685
Address:Floor 5 & 6, Building A1, HAIKEXING Strategic Innovative Industrial Park, 16 BaoShan Road, PingShan District
Shanghai Zhihua ChemTech Co., Ltd.
Contact:+86-13774313779
Address:Room 817 Suite B 3333 Shenjiang Road
WuHan rongfashun BioChemical co., LTD
Contact:02788866139
Address:No.95 LuoYu Road,Wuhan
Shandong Loyal Chemical industrial Co.,Ltd
Contact:0533-7451788
Address:Linzi Chemical Industrial Park, Zibo, Shandong Province
Doi:10.1080/00397910008086996
(2000)Doi:10.1021/je034210d
(2004)Doi:10.1016/j.molstruc.2020.128662
(2020)Doi:10.1039/b611906a
(2006)Doi:10.1016/S0008-6215(00)90201-5
(1986)Doi:10.1002/iub.2201
(2020)