Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
trans-azobenzene. However, once the assembly of 21 was
irradiated with UV light, it isomerized to 2cis-1, presented a non-
helical snowflake-like nanostructure which can be ascribed to the
opposite twisting behavior of the two cholesterol units mediated by
cis-azobenzene.
In summary, a snowflake-like supramolecular clockwise-helical
assembly has been constructed through the intermolecular
complexation of trans-1 with the cholesterol derivative 2. After
trans-1 in this supramolecular assembly was changed into cis-1 via
UV-irradiation, its helix was lost accompanying the disappearance of
the CD signals in the azobenzene zone of 1. The photocontrolled
conversion of morphology, transferred chirality and facile
preparation properties will give the supramolecular assembly
potential application value in materials, photo driven chiral switches
and information storage.
1
1
5. A. Sewbalas, R. U. Islam, W. A. L. van Otterlo, C. B. de
DOI: 10.1039/C9CC01874C
Koning, M. Singh, P. Arbuthnot and M. Ariatti, Med Chem
Res., 2013, 22, 2561-2569.
6. (a) Y. Zhao, I. Aprahamian, A. Trabolsi, N. Erina and J. F.
Stoddart, J. Am. Chem. Soc., 2008, 130, 6348-6350; (b) M.
Berg, S. Nozinovic, M. Engeser and A. lützen, Eur. J. Org.
Chem., 2015, 27, 5966-5978.
1
1
1
2
7. K. Atsushi, N. Osamu, K. Tisto, T. Motowo, K. Koji and S. Seiji,
Chem. Lett., 1983, 12, 1327-1330.
8. W. Zhang, Y. Chen, J. Yu, X.-J. Zhang and Y. Liu, Chem.
Commun., 2016, 52, 14274-14277.
9. A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40,
4
422-4437.
0. P. R. Ashton, P. J. Cambell, P. T. Glink, D. Philp, N. Spencer,
J. F. Stoddart, E. J. T. Chrystal, S. Menzer, D. J. Williams and
P. A. Tasker, Angew. Chem. Int. Ed., 1995, 34, 1865-1869.
We thank the National Natural Science Foundation of China (Nos.
2
1772100 & 21432004), and the 973 Program (2015CB856500) for
financial support.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
. (a) M. H. Liu, L. Zhang and T. Y. Wang, Chem. Rev., 2015,
1
15, 7304-7397; (b) G. A. Hembury, V. V. Borovkov and Y.
Inoue, Chem. Rev., 2008, 108, 1-73; (c) P. Xing and Y. Zhao,
Acc. Chem. Res., 2018, 51, 2324-2334.
2
. (a) G. Liu, J. Liu, C. Feng and Y. Zhao, Chem. Sci., 2017, 8,
1
769-1775; (b) F. Wang and C.-L. Feng, Chem. Eur. J., 2018,
4, 1509; (c) E. Yashima, N. Ousaka, D. Taura, K. Shimomura,
2
T. Ikai and K. Maeda, Chem. Rev., 2016, 116, 13752-13990;
(
d) L. Mutihac, J. H. Lee, J. S. Kim and J. Vicens, Chem. Soc.
Rev., 2011, 40, 2777-2796.
3
4
. S. S. Badu, V. K. Praveen and A. Ajayaghosh, Chem. Rev.,
2
014, 114, 1973-2129.
. (a) P. Xing, H. P. Tham, P. Li, H. Chen, H. Xiang and Y. Zhao,
Adv. Sci., 2018, 5, 1700552; (b) P. Xing, Y. Li, Y. Wang, P.-Z.
Li, H. Chen, S. Z. F. Phua, Y. Zhao, Angew. Chem. Int. Ed.,
2
018, 57, 7774.
5
. J. H. Jung, J. A. Rim, S. J. Lee, S. J. Cho, S. Y. Cho, S. Y. Kim,
J. K, Kang, Y. M. Kim and Y. J. Kim, J. Phys. Chem., 2007, 111,
2
679-2682.
6
7
8
9
. G. Liu, J. Sheng, W. Teo, G. Yang, Y. Li and Y. Zhao, J. Am.
Chem. Soc., 2018, 140, 16275-16283.
. J. H. Jung, H. Kobayashi, M. Masuda, T. Shimizu and S.
Shinkai, J. Am. Chem. Soc., 2001, 123, 8785-8789.
. J. H. Jung, Y. Ono, K. Sakurai, M. Sano and S. Shinkai, J. Am.
Chem. Soc., 2000, 122, 8648-8653.
. Y. Zhou, H.-Y. Zhang, Z. -Y. Zhang and Y. Liu, J. Am. Chem.
Soc., 2017, 139, 7168-7171.
1
1
0. H. Wu, Y. Chen and Y. Liu, Adv. Mater., 2017, 29, 1605271.
1. H.-B. Cheng, H.-Y. Zhang and Y. Liu, J. Am. Chem. Soc., 2013,
1
35, 10190-10193.
2. I. K. Sakodinskaya and A. D. Ryabov, Biotechnol. Lett., 2000,
2, 173-176.
1
1
1
2
3. Z. H. Sun, M. Barboiu, Y.-M Legrand, E. Petit and A. Rotaru,
Angew. Chem. Int. Ed., 2015, 54, 14473-14477.
4. (a) J. H. Jung, Y. Ono and S. Shinkai, Tetrahedron Lett, 1999,
4
0, 8395-8399; (b) J. H. Jung, Y. Ono, K. Sakurai, M. Sano
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins