Y. Takahashi et al. / Tetrahedron Letters 46 (2005) 8415–8418
Table 1. Photolysis and thermolysis of 8 and 9
8417
OMe
N
NN(Na)Ts
Ph
N
O
Ph
Ph
Ph
8
9
Entry
Precursor
Conditions
Conv. (%)
Products (yield (%))
1
2
3
4
8
8
8
9
150 °C, 5 min, no solvent
150 °C, 5 min, diglyme
hm, 7 h, dimethoxyethane
hm, 5 h, dimethoxyethane
95
99
97
1 (84), 2 (2.6), 5 (<1)
1 (89), 2 (1.8), 5 (<1)
1 (54), 2 (9.6), 4 (3.3), 5 (<1)
100
1 (97), 2 (1.6), 4 (<1), 5 (<1)
1
Precursor (0.20 mmol) was heated or irradiated (k > 300) under nitrogen and the resulting reaction mixture was analyzed by H NMR (300 MHz).
to 61 may lead to a rough estimate that the rate of 1,2-
C migration of 3 to 1 would be at least 5.6–61 times
faster than that of the parent. In other words, 2,2-diphen-
ylcyclobutylidene 3 would have 5.6–61 times shorter
lifetime relative to that of the parent; reportedly 4–
3. (a) Gilbert, J. C.; Butler, J. R. J. Am. Chem. Soc. 1970, 92,
7
4
493–7494; (b) Gilbert, J. C.; Luo, T. J. Org. Chem. 1981,
6, 5237–5239.
4
. Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka, S.; Hirai,
T.; Sugimoto, A. Org. Lett. 2001, 3, 581–584.
5
. (a) Ikeda, H.; Akiyama, K.; Takahashi, Y.; Nakamura, T.;
Ishizaki, S.; Shiratori, Y.; Ohaku, H.; Goodman, J. L.;
Houmam, A.; Wayner, D. D. M.; Tero-Kubota, S.;
Miyashi, T. J. Am. Chem. Soc. 2003, 125, 9147–9157; (b)
Ikeda, H.; Nakamura, T.; Miyashi, T.; Goodman, J. L.;
Akiyama, K.; Tero-Kubota, S.; Houmam, A.; Wayner, D.
D. M. J. Am. Chem. Soc. 1998, 120, 5832–5833; (c)
Miyashi, T.; Kamata, M.; Mukai, T. J. Am. Chem. Soc.
2
0 ns in cyclohexane-d and 0.3–1 ns in acetonitrile,
12
1
5
respectively.
In this regard, the lifetime of 3 may be practically too
short to react with 1 in solution to form an adduct such
as 7, whose spiropentane–methylenecyclobutane-type
skeletal rearrangement can explain the formation of
dimer 6. However, formation of adduct 7 may be
marginally possible in the solid-state photolysis of 1,
particularly when crystal structure of 1 adopts special
molecular orientation and packing.
1
987, 109, 2780–2788; (d) Miyashi, T.; Kamata, M.;
Mukai, T. J. Am. Chem. Soc. 1986, 108, 2755–2757; (e)
Miyashi, T.; Takahashi, Y.; Mukai, T.; Roth, H. D.;
Schilling, M. L. M. J. Am. Chem. Soc. 1985, 107, 1079–
1
081; (f) Takahashi, Y.; Miyashi, T.; Mukai, T. J. Am.
Chem. Soc. 1983, 105, 6511–6513.
Another possibility is the involvement of triplet state of
6
7
. Cyclobutene 4 was synthesized by the reaction of
n-BuLi with tosylhydrazone of cyclobutanone 5. Cyclo-
butanone 5 was synthesized by the oxidation of 1 with
MCPBA.
3
. Recent theoretical calculations for parent cyclobutyl-
idene suggest that its triplet state is thermally accessible
because the singlet–triplet energy separation (DE
=
S–T
À1
1
. Data of 6: mp 176.2–176.4 °C; H NMR (500 MHz,
À5.9kcal mol ) is smaller than the barriers to 1,2-C
CDCl ) 7.34–7.31 (m, 8H), 7.26–7.22 (m, 12H), 2.63 (t,
3
and 1,2-H migrations to methylenecyclopropane and
13
1
9
J = 8.1 Hz, 4H), 2.21 (t, J = 8.1 Hz, 4H); C NMR
125 MHz, CDCl ) 146.34 (4C, Ph), 139.61 (2C, C@C),
28.06 (8C, Ph), 128.02 (8C, Ph), 125.94 (4C, Ph), 60.21
2C, >CPh ), 35.15 (2C, CH ), 25.62 (2C, CH ); MS (EI)
cyclobutene, respectively. It may be an interesting
interpretation that formation of cyclobutanone 5 is also
an indication of intervening triplet state of 3. At this
stage, however, this point is yet to be fully investigated.
(
3
1
(
2
2
2
+
m/z = 412 (M ), 204 (100%). HRMS m/z = 412.2197,
calcd. for C H = 412.2191.
3
2
28
8
. Fields, T. R.; Kropp, P. J. J. Am. Chem. Soc. 1974, 96,
559–7560.
7
Acknowledgements
9
. Inoue, Y.; Takamuku, S.; Sakurai, H. J. Chem. Soc.,
Chem. Commun. 1975, 577–578.
Support of this work by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, and
Culture of Japan is greatly acknowledged.
1
0. (a) Hixson, S. S. J. Am. Chem. Soc. 1975, 97, 1981–1982;
b) Hixson, S. S.; Tausta, J. C.; Borovsky, J. J. Am. Chem.
(
Soc. 1975, 97, 3230–3232.
1
1
1
1. Kirmse, W.; Strehlke, I. K.; Steenken, S. J. Am. Chem.
Soc. 1995, 117, 7007–7008.
2. Friedman, L.; Schechter, H. J. Am. Chem. Soc. 1960, 82,
1002–1003.
3. Brinker, U. H.; Schenker, G. J. Chem. Soc., Chem.
Commun. 1982, 679.
References and notes
1
. (a) Berson, J. A. In Rearrangements in Ground and
Excited States; de Mayo, P., Ed.; Academic Press: New
York, 1980; Vol. 1, p 311; (b) Greenberg, A.; Liebman, J.
F. Strained Organic Molecules; Academic Press: New
York, 1978; (c) Gajewski, J. J. Hydrocarbon Thermal
Isomerizations; Academic Press: New York, 1981.
. Kende, A. S.; Goldschmidt, Z.; Smith, R. F. J. Am. Chem.
Soc. 1970, 92, 7606–7607.
14. Sulzbach, H. M.; Platz, M. S.; Schaefer, H. F.; Hadad, C.
M. J. Am. Chem. Soc. 1997, 119, 5682–5689.
15. Pezacki, J. P.; Pole, D. L.; Warkentin, J.; Chen, T.; Ford,
F.; Toscano, J. P.; Fell, J.; Platz, M. S. J. Am. Chem. Soc.
1997, 119, 3191–3192.
2
16. (a) Kirmse, W. Carbene Chemistry, 2nd ed.; Academic
Press: New York, 1971; (b) Baron, W. J.; DeCamp, M. R.;