C O MMU N I C A T I O N S
Table 2. Catalytic Enantioselective Staudinger Reactions of
Symmetrical Disubstituted Ketenes with a Range of Imines
In summary, we have demonstrated that a planar-chiral derivative
of PPY is an excellent catalyst for enantioselective Staudinger
reactions. A range of symmetrical and unsymmetrical disubstituted
ketenes couple with a wide array of imines to provide â-lactams
with very good stereoselection and yield; this work represents a
considerable expansion in the scope of this important process.
Current efforts are focused on exploring the breadth and the
mechanism of this and related nucleophile-catalyzed asymmetric
reactions of ketenes.
Acknowledgment. We thank Ivory D. Hills for assistance with
X-ray crystallography. Support has been provided by Bristol-Myers
Squibb, Merck, the National Institutes of Health (National Institute
of General Medical Sciences, R01-GM57034), Novartis, and Pfizer.
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
a Average of two runs. b Reaction was started at -40 °C. c Reaction was
run at 35 °C in 1:1 toluene/THF with 1.5 equiv of ketene.
References
Table 3. Catalytic Enantioselective Staudinger Reactions of
Unsymmetrical Disubstituted Ketenes with a Range of Imines
(1) Dedicated to Professor Robert H. Grubbs on the occasion of his 60th
birthday.
(2) (a) The Chemistry of â-Lactams; Page, M. I., Ed.; Chapman and Hall:
London, 1997. (b) Chemistry and Biology of Beta-Lactam Antibiotics;
Morin, R. B., Gorman, M., Eds.; Academic: New York, 1982; Volumes
1-3. (c) The Organic Chemistry of â-Lactams; Georg, G. I., Ed.; VCH:
New York, 1993; pp 295-368. (d) ComprehensiVe Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: New
York, 1996; Vol. 1B, Chapters 1.18-1.20. (e) Synthesis of â-Lactam
Antibiotics; Bruggink, A., Ed.; Kluwer: Dordrecht, Netherlands, 2001.
(f) Ojima, I.; Delaloge, F. Chem. Soc. ReV. 1997, 26, 377-386. Ojima, I.
Acc. Chem. Res. 1995, 28, 383-389. (g) Juaristi, E. EnantioselectiVe
Synthesis of â-Amino Acids; Wiley-VCH: New York, 1997.
(3) For an overview, see: Niccolai, D.; Tarsi, L.; Thomas, R. J. Chem.
Commun. 1997, 2333-2342.
(4) For leading references, see: Kingston, D. I. Chem. Commun. 2001, 867-
880.
(5) (a) Staudinger, H. Liebigs Ann. Chem. 1907, 356, 51-123. (b) For leading
references to the asymmetric synthesis of â-lactams via the Staudinger
reaction, see: Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur.
J. Org. Chem. 1999, 3223-3235. Georg, G. I.; Ravikumar, V. T. In The
Organic Chemistry of â-Lactams; Georg, G. I., Ed.; VCH: New York,
1993; pp 295-368.
a Average of two runs.
(6) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lectka,
T. J. Am. Chem. Soc. 2000, 122, 7831-7832. The yield of â-lactam, based
on the acid chloride precursor to the ketene, ranges from 36 to 65% (six
examples). See also: Wack, H.; Drury, W. J., III; Taggi, A. E.; Ferraris,
D.; Lectka, T. Org. Lett. 1999, 1, 1985-1988.
(7) For four other methods for the catalytic enantioselective synthesis of
â-lactams, see: (a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989,
111, 931-934. (b) Watanabe, N.; Anada, M.; Hashimoto, S.-i.; Ikegami,
S. Synlett 1994, 1031-1033. Doyle, M. P.; Kalinin, A. V. Synlett 1995,
1075-1076. (c) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org.
Chem. 1995, 60, 4999-5004. (d) Fujieda, H.; Kanai, M.; Kambara, T.;
Iida, A.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 2060-2061. Tomioka,
K.; Fujieda, H.; Hayashi, S.; Hussein, M. A.; Kambara, T.; Nomura, Y.;
Kanai, M.; Koga, K. Chem. Commun. 1999, 715-716. Unfortunately,
none of these methods is general and highly enantioselective.
Figure 1. Proposed mechanism for enantioselective Staudinger reactions
catalyzed by PPY derivative 6.
(8) Hodous, B. L.; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999, 121,
2637-2638.
(9) (a) For an overview, see: Fu, G. C. Acc. Chem. Res. 2000, 33, 412-420.
(b) For more recent work, see: Arai, S.; Bellemin-Laponnaz, S.; Fu, G.
C. Angew. Chem., Int. Ed. 2001, 40, 234-236.
We have established that the â-lactams generated by our catalytic
asymmetric Staudinger reactions can be ring-opened with amines
to afford â-amino amides (eq 2) and with LiAlH4 to furnish
N-protected γ-amino alcohols (eq 3). As expected, the enantiomeric
and diastereomeric purity of the â-lactam is preserved during these
transformations.
(10) Optimization (e.g., of concentration) of the initial reaction conditions led
to improved enantioselectivity (Table 1, entry 5 vs Table 2, entry 2).
(11) Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75-77.
(12) Generation of diethylketene proceeds more cleanly in toluene/THF than
in toluene alone; therefore, the Staudinger reactions of this substrate were
run in toluene/THF (Table 2, entries 6 and 7).
(13) For a recent review of catalytic asymmetric methods that generate
quaternary stereocenters, see: Corey, E. J.; Guzman-Perez, A. Angew.
Chem., Int. Ed. 1998, 37, 388-401. See also: Fuji, K. Chem. ReV. 1993,
93, 2037-2066.
(14) (a) Under otherwise identical conditions, in the absence of catalyst, no
â-lactam is generated. (b) Almost identical stereoselectivity is observed
with 1% catalyst, but the rate of product formation is very slow. (c)
Approximately 80% of the catalyst can be recovered at the end of the
reaction. (d) Phenylmethylketene reacts with N-(2-furfurylidene)-4-
methylbenzenesulfonamide to give the â-lactam product with dr ) 2: 1
(major diastereomer: 84% ee).
JA012427R
9
J. AM. CHEM. SOC. VOL. 124, NO. 8, 2002 1579