C O M M U N I C A T I O N S
In conclusion, we have reported the first example showing the
generation of nonheme iron(III)-hydroperoxo and iron(IV)-oxo
complexes by activating O with a biologically important electron
2
donor, an NADH analogue, and an acid. The formation of the
iron(III)-hydroperoxo and iron(IV)-oxo complexes was found to
depend on the supporting ligands. We have also demonstrated that
III/II
it is high-spin nonheme iron(II) complexes with low Fe
redox
2
potentials which are able to bind and activate O to generate
iron-oxygen intermediates.
Acknowledgment. The research was supported by KOSEF/MEST
through the CRI Program (to W.N.) and WCU Program (R31-2008-
00-10010-0) (to S.F. and W.N.), KOSEF (R01-2008-000-20704-0)
(to W.S.), and a Global COE program from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (to S.F.).
Figure 2. (a) UV/vis spectral changes showing the formation of 3 (red
II
line) in the reaction of [Fe (TMC)](CF
presence of BNAH (0.5 mM) and HClO
3
SO
(0.5 mM) in CH
b) ESI MS spectrum of 3. Peaks at m/z of 184.5 and 477.0 correspond to
3
)
2
(0.5 mM) and O
2
in the
0
4
3
CN at 25 °C.
(
[
IV
2+
IV
+
3 3 3
Fe (TMC)(O)(CH CN)] and [Fe (TMC)(O)(CF SO )] , respectively.
Insets show the observed (left panel) and calculated (right panel) isotope
distribution patterns.
Supporting Information Available: Experimental details and
spectroscopic and cyclic voltammetric data. This material is available
free of charge via the Internet at http://pubs.acs.org.
Scheme 2
References
(
1) (a) Comba, P.; Kerscher, M.; Schiek, W. Prog. Inorg. Chem. 2007, 55,
6
13–704. (b) Kovacs, J. A.; Brines, L. M. Acc. Chem. Res. 2007, 40, 501–
09. (c) Nam, W. Acc. Chem. Res. 2007, 40, 522–531. (d) Costas, M.;
5
Mehn, M. P.; Jensen, M. P.; Que, L, Jr. Chem. ReV. 2004, 104, 939–986.
2) (a) Solomon, E. I.; Wong, S. D.; Liu, L. V.; Decker, A.; Chow, M. S.
Curr. Opin. Chem. Biol. 2009, 13, 99–113. (b) Kovaleva, E. G.; Lipscomb,
J. D. Nat. Chem. Biol. 2008, 4, 186–193. (c) Krebs, C.; Fujimori, D. G.;
Walsh, C. T.; Bollinger, J. M., Jr. Acc. Chem. Res. 2007, 40, 484–492. (d)
Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. ReV. 2005, 105, 2227–
(
II
2+
II
2+
[
Fe (N4Py)] and [Fe (Bn-TPEN)] . This observation is in line
with previous reports that only in alcohol or acetone are iron(III)-
hydroperoxo complexes generated in the reactions of iron(II)
complexes with H
complexes were shown to be different depending on solvents; a
low-spin iron(II) complex formed in CH CN, whereas, in acetone,
a high-spin iron(II) complex formed. We have also confirmed in
the present study that [Fe (N4Py)] and [Fe (Bn-TPEN)] are
low-spin complexes in CH CN while they are high-spin in CH OH
SI, Figure S6 for H NMR spectra). Further, cyclic voltammetric
2
252. (e) Ortiz de Montellano, P. R. Cytochrome P450: Structure,
8
,9
2
O
2
.
Also, the spin states of the iron(II)
Mechanism, and Biochemistry, 3rd ed.; Kluwer Academic/Plenum Publish-
ers: New York, 2005. (f) Denisov, I. G.; Makris, T. M.; Sligar, S. G.;
Schlichting, I. Chem. ReV. 2005, 105, 2253–2276.
3
(3) (a) Shook, R. L.; Borovik, A. S. Chem. Commun. 2008, 6095–6107. (b)
Korendovych, I. V.; Kryatov, S. V.; Rybak-Akimova, E. V. Acc. Chem. Res.
8
b
2
007, 40, 510–521. (c) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54–61.
II
2+
II
2+
(4) (a) Thallaj, N. K.; Rotthaus, O.; Benhamou, L.; Humbert, N.; Elhabiri,
M.; Lachkar, M.; Welter, R.; Albrecht-Gary, A.-M.; Mandon, D.
Chem.sEur. J. 2008, 14, 6742–6753. (b) Korendovych, I. V.; Kryatova,
O. P.; Reiff, W. M.; Rybak-Akimova, E. V. Inorg. Chem. 2007, 46, 4197–
4211. (c) MacBeth, C. E.; Golombek, A. P.; Young, V. G., Jr.; Yang, C.;
Kuczera, K.; Hendrich, M. P.; Borovik, A. S. Science 2000, 289, 938–
3
3
1
(
III/II
measurements indicate that the Fe
iron(II) complexes are significantly lower than those of the
corresponding low-spin iron(II) complexes. For example, the high-
redox potentials of high-spin
9
41. (d) Kimura, E.; Kodama, M.; Machida, R.; Ishizu, K. Inorg. Chem.
982, 21, 595–602.
1
(
5) Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W. J. Am. Chem. Soc.
2
spin iron(II) complexes in CH
3
OH show irreversible redox behavior
005, 127, 4178–4179.
at lower potentials (Epc ) 0.29 V and Epa ) 0.63 V vs SCE for
(6) Thibon, A.; England, J.; Martinho, M.; Young, V. G., Jr.; Frisch, J. R.;
Guillot, R.; Girerd, J.-J.; Munck, E.; Que, L., Jr.; Banse, F. Angew. Chem.,
Int. Ed. 2008, 47, 7064–7067.
(7) Abbreviations: TMC ) 1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetrade-
cane, TMC-Py ) 1-(2′-pyridylmethyl)-4,8,11-trimethyl-1,4,8,11-tetraaza-
cyclotetradecane, N4Py ) N,N-bis(2-pyridylmethyl)-bis(2-pyridyl)meth-
ylamine, Bn-TPEN ) N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-1,2-diami-
noethane.
II
2+
II
[
Fe (N4Py)] and Epc ) 0.29 V and Epa ) 0.75 V for [Fe (Bn-
2
+
TPEN)] ), whereas the low-spin iron(II) complexes in CH
show reversible behavior at higher potentials (E ) 1.00 V for
3
CN
0′
II
2+
0′
II
2+
[Fe (N4Py)] and E ) 0.95 V for [Fe (Bn-TPEN)] ) (SI, Figure
II
2+
S7 for cyclic voltammograms). In the case of [Fe (TMC)] , it is
in a high-spin Fe(II) state in CH
(
8) (a) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B.; Que, L, Jr.
Angew. Chem., Int. Ed. 1995, 34, 1512–1514. (b) Roelfes, G.; Lubben,
M.; Chen, K.; Ho, R. Y. N.; Meetsma, A.; Genseberger, S.; Hermant, R.
M; Hage, R.; Mandal, S. K.; Young, V. G., Jr.; Zang, Y.; Kooijman, H.;
Spek, A. L.; Que, L, Jr.; Feringa, B. L. Inorg. Chem. 1999, 38, 1929–
5
3
CN (0.38 V vs SCE). Thus, the
present results demonstrate that high-spin iron(II) complexes with
III/II
a low Fe
2
redox potential are able to bind and activate O to
1
936.
form iron-oxygen adducts in the presence of an NADH analogue
and an acid. It is worth noting that it is high-spin Fe(II) species
(
9) (a) Hazell, A.; McKenzie, C. J.; Nielsen, L. P.; Schindler, S.; Weitzer, M.
J. Chem. Soc., Dalton Trans. 2002, 310–317. (b) Simaan, A. J.; D o¨ pner,
S.; Banse, F.; Bourcier, S.; Bouchoux, G.; Boussac, A.; Hildebrandt, P.;
Girerd, J.-J. Eur. J. Inorg. Chem. 2000, 1627–1633.
2
which bind and activate O in heme and nonheme iron enzymes
2
,13
and in bleomycin.
A proposed mechanism for O
here is depicted in Scheme 2. The reaction is initiated by O
(
(
10) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc.
987, 109, 305–316.
1
2
-activation in the complexes described
-binding
11) We have previously shown that the iron-oxygen intermediates such as
iron(III)-hydroperoxo and iron(IV)-oxo species react further with BNAH
(i.e., in hydride-transfer reactions); see: Fukuzumi, S.; Kotani, H.; Lee,
Y.-M.; Nam, W. J. Am. Chem. Soc. 2008, 130, 15134–15142. Also, see
SI, Figure S3b.
2
by a high-spin iron(II) complex that leads to the generation of an
iron(III)-superoxo intermediate (pathway A); consecutive electron- and
proton-transfer steps result in conversion to a low-spin iron(III)-
hydroperoxo intermediate (pathway B). While iron(III)-hydroperoxo
intermediates were formed as the final product in the reaction of iron
complexes bearing pentadentate N4Py and Bn-TPEN ligands, the iron
complex bearing a tetradentate TMC ligand afforded the iron(IV)-
oxo complex via O-O bond cleavage in an unidentified
(12) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M. R.;
Stubna, A.; M u¨ nck, E.; Nam, W.; Que, L, Jr. Science 2003, 299, 1037–1039.
(
13) (a) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152–163.
(b) Burger, R. M. Struct. Bonding (Berlin) 2000, 97, 287–303.
IV
2+
(
14) We have previously proposed that the formation of [(TMC)Fe (O)] (3)
II
2+
from the reaction of [Fe (TMC)] and O
alcohols or CH CN/ethers occurs via O-O bond cleavage of a (µ-1,2-
peroxo)diiron(III) intermediate: see ref 5.
2 3
in solvent mixtures of CH CN/
3
III
2+
14
[
(TMC)Fe -OOH] intermediate (pathway C).
JA905691F
J. AM. CHEM. SOC. 9 VOL. 131, NO. 39, 2009 13911