296
M. Bella, V. Milata, and L. I. Larina
Vol 49
[5] Friedlander, P. Chem Ber 1882, 15, 2572.
General procedure for preparation of methylated 2-ami-
´
ˇ
[6] Milata, V.; Ilavsky, D.; Lesko, J. Collect Czech Chem
nonitrobenzimidazoles (2c–f). A mixture of N-methylated
nitro-o-phenylenediamine 1c–f (0.25 g, 1.5 mmol) and cyano-
gen bromide (0.22 g, 2.1 mmol, 1.4 eq) was refluxed in metha-
nol (7.5 mL) until all starting material was consumed (2–6 h,
TLC CHCl3:MeOH 10:1). After cooling, reaction mixture was
charcoaled, filtered into a beaker, and alkalized with 30%
NaOH solution. Separated crystals or solids were collected by
suction, washed with water to remove rests of inorganic mate-
rials, and dried to give compounds 2c (0.27 g, 94%) 2d (0.27
g, 94%), 2e (0.24 g, 83%), and 2f (0.23 g, 80%), respectively.
2-Amino-1-methyl-4-nitrobenzimidazole (2c) Golden-brown
needles, mp 300–304ꢀC. Anal. Calcd. for C8H8N4O2: C, 50.00;
H, 4.20; N, 29.15. Found: C, 50.10; H, 4.18; N, 29.19.
2-Amino-1-methyl-5-nitrobenzimidazole (2d) Yellow solid,
mp 342–350ꢀC. Anal. Calcd. for C8H8N4O2: C, 50.00; H,
4.20; N, 29.15. Found: C, 49.96; H, 4.21; N, 29.13.
2-Amino-1-methyl-6-nitrobenzimidazole (2e) Yellow solid,
mp 305–309ꢀC. Anal. Calcd. for C8H8N4O2: C, 50.00; H,
4.20; N, 29.15. Found: C, 50.09; H, 4.17; N, 29.12.
Commun 1988, 53, 1068.
[7] Dammertz, W.; Reimann, E. Arch Pharm 1977, 310, 172.
[8] (a) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; (b) Weedon, B.
C. L. J Chem Soc 1946, 39; (c) Sauer, J. C. Org Synth Coll 1963, IV, 813.
[9] Veliev, M. G.; Guseinov, M. M. Synthesis 1980, 461.
[10] Sydnes, L. K.; Bakstad, E. Acta Chem Scand 1996, 50, 446.
¨
[11] Breitmaier, E.; Ullrich, F.-W.; Potthoff, B.; Bohme, R.;
Bastian, H. Synthesis 1987, 1.
[12]
(a) Reichardt, C.; Scheibelein, W. Tetrahedron Lett 1977,
24, 2087; (b) Todoriki, R.; Ono, M.; Tamura S. Heterocycles 1986,
24, 755; (c) Lynch, B. M.; Khan, M. A.; Teo, H. C.; Pedrotti, F. Can
J Chem 1988, 66, 420; (d) Alegretti, M.; Anacardio, R.; Cesta, M. C.;
Curti, R.; Mantovanini, M.; Nano, G.; Topai, A.; Zampella, G. Org
Proc Res Dev 2003, 7, 209.
[13] (a) Tamm, I.; Sehgal, P. B. Adv Virus Res 1978, 22, 186;
(b) Tamm, I. Science 1954, 120, 847; (c) Ottana, R.; Carotti, S.; Mac-
cari, R.; Landini, I.; Chiricosta, G.; Cacigli, B.; Vogorita, G. M.; Mini,
E. Bioorg Med Chem Lett 2005, 15, 3930.
[14] (a) Preston, P. N.; Tennant, G. In The Chemistry of Heterocy-
clic Compounds, Benzimidazoles and Congeneric Tricyclic Compounds,
Part 1, Tricyclic 6-6-5 Fused Benzimidazoles with One Additional Heteroa-
tom; Preston, P. N., Ed.; Wiley: New York, 1981; Vol. 40, Chapter 5, pp
483–644; (b) Milata, V. Advances in Heterocyclic Chemistry; Academic
Press: San Diego, 2001; (c) Carta, A.; Paglietti, G. In Modern Approaches
to the Synthesis of O- and N-Heterocycles; Kaufman, T. S.; Larghi, E. L.,
Eds.; Research Signpost: Kerala, India, 2007; Vol. 1, pp 173–185.
[15] Nagao, M.; Sugimura, T. Food Borne Carcinogens; Wiley:
Chichester, 2000.
2-Amino-1-methyl-7-nitrobenzimidazole (2f) Brown solid,
mp 290–296ꢀC. Anal. Calcd. for C8H8N4O2: C, 50.00; H,
4.20; N, 29.15. Found: C, 50.13; H, 4.16; N, 29.17.
2-Amino-3-methylimidazo[4,5-f]quinoline (4) To a suspen-
sion of 2-aminobenzimidazole 2d (1.92 g, 10 mmol) in methanol
(100 mL), freshly activated Raney nickel catalyst (prepared from 4
g of RaNi alloy) was added, and reaction mixture was stirred vigo-
rously under hydrogen atmosphere (200 kPa) overnight. After the
reduction was complete, 1,1,3,3-tetramethoxypropane (2.46 g, 15
mmol) was added, and the catalyst was filtered off. The filtrate was
slowly heated with magnetic stirring in an oil bath till the tempera-
ture in the oil bath reached 100ꢀC within 2 h. Thereafter reaction
mixture was allowed to cool, and the solvent was evaporated under
reduced pressure. To the rest, polyphosphoric acid (40 g) was
added, and the resulting mixture was mechanically stirred with a
glass rod while the temperature in the oil bath was raised to 120ꢀC
and stirring continued at this temperature for 30 min. After cooling,
reaction mixture was diluted with ice-water (150 mL), charcoaled,
filtered into a beaker, and alkalized with concentrated ammonia.
This mixture was extracted with toluene (3 ꢂ 50 mL) and ethyl ac-
etate (3 ꢂ 50 mL). Combined extracts were dried over Na2SO4, fil-
tered, and evaporated to dryness under reduced pressure. The resi-
due was recrystallized from acetone-methanol to give white crys-
tals, 0.4 g (20%), mp > 300ꢀC ([17b] >320ꢀC); NMR spectra
were in accordance with previously published ones [16,17b].
[16] (a) Kasai, H.; Nishimura, S.; Wakabayashi, K.; Nagao, M.;
Sugimura, T. Proc Jap Acad Ser B 1980, 56, 382; (b) Adolfsson, I.;
Olsson, K. Acta Chem Scand Ser B 1983, 37, 157.
[17a] Pozharskii, A. F.; Simonov, A. M.; Marjanovskii, V. M.;
Zintschenko, R. P. Khim Geterotsikl Soed 1970, 8, 1060; (b) Ziv, J.;
Knapp, S.; Rosen, J. D. Synth Commun 1988, 18, 973.
[18] Waterhouse, A. L.; Rapoport, H. J Label Compd Radio-
pharm 1985, 22, 201.
[19] Turesky, R. J.; Bur, H.; Hyunh-Ba, T.; Aeschenbacher, H.
U.; Milon, H. Food Chem Toxicol 1988, 26, 501.
[20] Bella, M.; Milata, V. J Heterocycl Chem 2008, 45, 425.
[21] (a) Berg, S. S.; Parnell, E. W. J Chem Soc 1961, 5275; (b)
Mandel, L. R.; Porter, C. C.; Kuehl, F. A.; Jensen, N. P.; Schmitt, S.
M.; Windholz, T. B.; Beattie, T. R.; Carty, J. A.; Christensen, B. G.;
´
Shen, T. Y. J Med Chem 1970, 13, 1043; (c) Alcalde, E.; Dinares, I.;
Elguero, J.; Frigola, J.; Osuna, A.; Castanys, S. Eur J Med Chem
1990, 25, 309; (d) Powers, J. P.; Li, S.; Jean, J. C.; Liu, J.; Walker,
N. P. C.; Wang, Z.; Wesche, H. Bioorg Med Chem Lett 2006, 16,
´
2842; (e) Starcevic, K.; Caleta, I.; Cincic, D.; Kaitner, B.; Kralj, M.;
ˇ
´
ˇ ´
Acknowledgments. The authors are grateful to the Slovak Grant
Agency (Project 01/0660/11) and the Slovak Research and Devel-
opment Agency (APVV-0339-10) for financial support.
Ester, K.; Karminski-Zamola, G. Heterocycles 2006, 68, 2285.
ˇ
[22] Garcia, M. A.; Claramunt, R. M.; Solcan, T.; Milata, V.;
Alkorta, I.; Elguero, J. Magn Reson Chem 2009, 47, 100.
[23] Larina, L. I.; Milata, V. Magn Reson Chem 2009, 47, 142.
[24] Larina; L. I. Doctoral Thesis: NMR Spectroscopy and
Structure of Substituted Azoles; Irkutsk, Russia, 2003.
[25] Larina, L. I; Lopyrev, V. A. Nitroazoles: Synthesis, Struc-
ture and Applications; Springer: New York, 2009; pp 236–262.
[26] Claramunt, R. M.; Sanz, D.; Lopez, C.; Jimenez, J. A.;
Jimeno, M. L.; Elguero, J.; Fruchier, A. Magn Reson Chem 1997, 35, 35.
[27] Witanowski, M.; Stefaniak, L.; Webb, G. A. In Annual
Reports on NMR Spectroscopy, Nitrogen NMR Spectroscopy; Webb,
G. A., Ed.; 1986; pp 310–320
REFERENCES AND NOTES
[1] Li, J. J. Name Reactions in Heterocyclic Chemistry; Wiley:
Hoboken, 2005.
[2]
(a) Albrecht, R. Prog Drug Res 1977, 21, 9; (b) Benoit,
R.; Duflos, J.; Dupas, G.; Bourguignon, J.; Queguiner, G. J Heterocycl
Chem 1989, 26, 1595; (c) Lynch, B. M.; Khan, M. A.; Teo, H. C.;
Pedrotti, F. Can J Chem 1988, 66, 420.
[3]
(a) Skraup, Z. H. Ber Dtsch Chem Ges 1880, 13, 2086;
(b) Manske, R. H. F.; Kulka, M. Org React 1953, 7, 80.
[4] Doebner, O.; von Miller, W. Ber Dtsch Chem Ges 1883,
16, 2464.
[28] Berger, S.; Braun, S. 200 and More Experiments; Wiley-
VCH: Weinheim, 2004.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet