COMMUNICATIONS
X.-T. Li, R.-H. Hu, S.-Q. Han, Synthesis 2015, 47, 1913–
1921.
lyzed coupling reaction of aryl halides with nitrogen
nucleophiles including pyrroles. Under the reaction
conditions [a] and [b], the coupling reactions of 2,5-di-
methylpyrrole (1c) with 1,3-dibromobenzene (15a) or
3-bromoiodobenzene (15b) were conducted, but 3ci
was not produced in a reasonable yield in any of the
cases, thus showing that our strategy would be superior
for the synthesis of N-(haloaryl)pyrroles. These compa-
rative experiments were carried out on the basis of the
literature methods. For the reaction conditions [a]:
a) J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buch-
wald, J. Org. Chem. 2004, 69, 5578–5587; for the reac-
tion conditions [b]: b) Z. Marton, R. Guillon, I. Krimm,
Preeti, R. Rahimova, D. Egron, L. P. Jordheim, N.
Aghajari, C. Dumontet, C. Pꢃrigaud, C. Lionne, S.
Peyrottes, L. Chaloin, J. Med. Chem. 2015, 58, 9680–
9696.
[7] For examples, see: a) H. Heaney, S. V. Ley, J. Chem.
Soc. Perkin Trans. 1 1973, 499–500; b) D. Bogdal, J. Pie-
lichowski, K. Jaskot, Heterocycles 1997, 45, 715–722;
c) Z.-G. Le, Z.-C. Chen, Y. Hu, Q.-G. Zheng, Synthesis
2004, 1951–1954.
[8] For selected reports on N-alkylation of pyrroles based
on conjugate addition to electron-deficient alkenes,
see: a) K. Matoba, T. Yamazaki, Chem. Pharm. Bull.
1982, 30, 2586–2589; b) J. E. Murtagh, S. H. McCooey,
S. J. Connon, Chem. Commun. 2005, 227–229; c) R. D.
Richardson, F. A. Hernandez-Juan, D. J. Dixon, Synlett
2006, 77–80; d) M. Bhanuchandra, M. R. Kuram, A. K.
Sahoo, Org. Biomol. Chem. 2012, 10, 3538–3555.
[9] For N-alkylation of pyrroles with alcohols under Mitsu-
nobu reaction conditions, see: a) A. Garofalo, G. Cam-
piani, I. Fiorini, V. Nacci, Tetrahedron 1999, 55, 1479–
1490; b) K. Hasse, A. C. Willis, M. G. Banwell, Aust. J.
Chem. 2009, 62, 683–691; c) J. K. Laha, G. D. Cuny, J.
Org. Chem. 2011, 76, 8477–8482.
ꢀ
[10] For N(pyrrolyl) C bond-forming reactions categorized
other than the reports collected in refs.[8,9], see: a) F.
Mingoia, P. Diana, P. Barraja, A. Lauria, A. M. Almeri-
co, Heterocycles 2000, 53, 1975–1985; b) R. D. Giaco-
metti, Y. K. Ramtohul, Synlett 2009, 2010–2016;
c) B. M. Trost, M. Osipov, G. Dong, Org. Lett. 2012, 14,
2254–2257.
[11] T. Tsuchimoto, M. Iwabuchi, Y. Nagase, K. Oki, H. Ta-
kahashi, Angew. Chem. 2011, 123, 1411–1415; Angew.
Chem. Int. Ed. 2011, 50, 1375–1379.
[12] For the Paal–Knorr reaction, see: Comprehensive Or-
ganic Name Reactions and Reagents, Vol. 2, (Ed.: Z.
Wang), Wiley, Hoboken, 2009, pp 2107–2110.
[13] For a mechanistic study of the Paal–Knorr reaction,
see: V. Amarnath, D. C. Anthony, K. Amarnath, W. M.
Valentine, L. A. Wetterau, D. G. Graham, J. Org.
Chem. 1991, 56, 6924–6931.
[14] The scope is limited virtually to the reaction of 2,5-di-
methylpyrrole with arylamines, see Table 1 of the fol-
lowing report: R. Zamora, F. J. Hidalgo, Synlett 2006,
1428–1430.
[15] Brønsted acids are known to induce oligomerization of
pyrroles, see: a) J. A. Joule, K. Mills, Heterocyclic
Chemistry, 5th edn., Wiley-Blackwell, Chichester, 2010,
pp 295–303; b) J. Bergman, T. Janosik, in: Modern Het-
erocyclic Chemistry, Vol. 1, (Eds.: J. Alvarez-Builla, J. J.
Vaquero, J. Barluenga), Wiley-VCH, Weinheim, 2011,
pp 269–375.
[16] For dehydration of alcohols under Lewis acidic condi-
tions, see: D. H. Hua, J. Am. Chem. Soc. 1986, 108,
3835–3837.
[17] For condensation of alcohols to produce ethers under
Lewis acid catalysis, see: a) S. Kim, K. N. Chung, S.
Yang, J. Org. Chem. 1987, 52, 3917–3919; b) V. Terras-
son, S. Marque, M. Georgy, J.-M. Campagne, D. Prim,
Adv. Synth. Catal. 2006, 348, 2063–2067.
[19] A compound, 2,5-dimethyl-1-(5-indolyl)pyrrole, closely
analogous to 3cj can be also obtained in 66% yield by
the Paal–Knorr reaction from 2,5-hexanedione and 5-
aminoindole, but the yield is somewhat lower than that
of 3cj prepared by our system, see: J. E. Macor, B. L.
Chenard, R. J. Post, J. Org. Chem. 1994, 59, 7496–7498.
[20] A benzyl-type group on the nitrogen atom of pyrroles
has been reported to undergo deprotection under
acidic conditions, for instance, at room temperature to
908C. For a review, see: B. Jolicoeur, E. E. Chapman,
A. Thompson, W. D. Lubell, Tetrahedron 2006, 62,
11531–11563.
[21] For selected reports on Lewis acid-catalyzed hydroami-
nation of alkenes, see: a) J. Zhang, C.-G. Yang, C. He,
J. Am. Chem. Soc. 2006, 128, 1798–1799; b) J. Michaux,
V. Terrasson, S. Marque, J. Wehbe, D. Prim, J.-M. Cam-
pagne, Eur. J. Org. Chem. 2007, 2601–2603; c) X.
Cheng, Y. Xia, H. Wei, B. Xu, C. Zhang, Y. Li, G.
Qian, X. Zhang, K. Li, W. Li, Eur. J. Org. Chem. 2008,
1929–1936.
[18] In accordance with the comment of one reviewer, the
ꢀ
synthesis of 3ci based on the N(pyrrolyl) C bond-form-
[22] For the Clauson–Kaas reaction, see: Comprehensive
Organic Name Reactions and Reagents, Vol. 1, (Ed.: Z.
Wang), Wiley, Hoboken, 2009, pp 665–668.
ing strategy was attempted, and thus carried out under
the conditions of the Ullmann–Goldberg reaction
which has been known traditionally as the copper-cata-
Adv. Synth. Catal. 0000, 000, 0 – 0
7
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!