10.1002/anie.201703611
Angewandte Chemie International Edition
COMMUNICATION
[6]
For recent reports on the Hofmann-Löffler reaction, see: a) C. Martínez,
K. Muñiz, Angew. Chem. 2015, 127, 8405; Angew. Chem. Int. Ed. 2015,
54, 8287; b) C. Q. O`Broin, P. Fernández, C. Martínez, K. Muñiz, Org.
Lett. 2016, 18, 436; c) E. A. Wappes, S. C. Fosu, T. C. Chopko, D. A.
Nagib, Angew. Chem. 2016, 128, 10128; Angew. Chem Int. Ed. 2016,
55, 9974; d) N. R. Paz, D. Rodríguez-Sosa, H. Valdés, R. Marticorena,
D. Melián, M. B. Copano, C. C. González, A. J. Herrera, Org. Lett. 2015,
17, 7564.
applicable leading to the corresponding pyrrolidines 2s-t in high
yields (70-82%).[27] In contrast to the previously described
iodine(I/III) approach for the Hofmann-Löffler reaction, the
intermediary benzyliodide of the iodine(-I/I) approach holds a
weaker nucleofug requiring additional activation by the benzylic
position to allow the internal substitution by the amide
nucleophile.
In summary, we have introduced a novel concept of a dual light-
activated cooperative iodine- and photoredox catalysis and
applied it to the intramolecular amination of remote sp3 C–H
bonds. The iodine acts as the primary catalyst allowing the
activation of the sp3 C–H bond by a light-induced homolytic
cleavage of in situ-generated N–I bonds followed by a 1,5-HAT
process. After recombination of the radicals and an
intramolecular substitution, the molecular iodine catalyst is
photoredox-catalytically reoxidized in a second light-induced
process. The key step of the reaction, the cleavage of the
intermediary N–I bond, has been rationalized by computational
methods, while the presence of the active iodine species,
hypoiodite, has been determined by Raman spectroscopy.
[7]
[8]
[9]
For references regarding HAT processes, see: a) J. M. Mayer, Acc.
Chem. Res. 2011, 44, 36; b) W. Liu, X. Huang, M.-J. Cheng, R. J.
Nielsen, W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322; c) J.
L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532.
a) J. C. K. Chu, T. Rovis, Nature 2016, 539, 272; b) G. J. Choi, Q. Zhu,
D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268; c) X.-Q.
Hu, J.-R. Chen, W.-J. Xiao, Angew. Chem. 2017, 129, 1988; Angew.
Chem. Int. Ed. 2017, 56, 1960.
For alternative metal-mediated N-centered radical generation, see: a) T.
Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069; b) J.-R. Chen, X.-
Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044; c) L. Q.
Nguyen, R. R. Knowles, ACS Catalysis 2016, 6, 2894.
[10] For general concepts of iodine-catalyzed C–H/N–H coupling: a) P.
Finkbeiner, B. Nachtsheim, Synthesis 2013, 45, 979; b) M. Uyanik, K.
Ishihara, ChemCatChem 2012, 4, 177; c) J. Li, M. J. Lear, Y.
Kawamoto, S. Umemiya, A. R. Wong, E. Kwon, I. Sato, Y. Hayashi,
Angew. Chem. 2015, 127, 13178; Angew. Chem. Int. Ed. 2015, 54,
12986.
Acknowledgements
[11] a) C. C. Clark, A. Marton, G. J. Meyer, Inorg. Chem. 2005, 44, 3383; b)
J. M. Gardner, M. Abrahamsson, B. H. Famum, G. J. Meyer, J. Am.
Chem. Soc. 2009, 131, 16206.
Financial support was provided by the Spanish Ministry for
Economy and Competitiveness and FEDER (CTQ2014-56474R
grant to K. M., and Severo Ochoa Excellence Accreditation
2014-2018 to ICIQ, SEV-2013-0319) and the Schweizerischer
Nationalfonds (No. 20020_169120 to M. R.). P. B. and C. J. S.
gratefully acknowledge the Alexander von Humboldt Foundation
for a postdoctoral fellowship, and the Fonds der Chemischen
Industrie for a Kekulé fellowship. The authors are grateful to the
CERCA Programme of the Government of Catalonia and to
[12] a) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075; b) D.
P. Hari, B. König, Chem. Commun. 2014, 50, 6688; c) S. Fukuzumi, K.
Ohkubo, Org. Biomol. Chem. 2014,12, 6059; d) M. Majek, A. J. von
Wangelin, Acc. Chem. Res. 2016, 49, 2316.
[13] M. A. Miranda, H. García, Chem. Rev. 1994, 94, 1063.
[14] The beneficial effect of HFIP might be aiding the protonation of the
intermediary hypoiodite species and shifting the disproportionation
equilibrium of the iodine species.
[15] Please see supporting information for more experimental details.
[16] In wet media molecular iodine inter alia disproportionates into iodide
and hypoiodite (see supporting information for more details).
[17] M. Uyanik, H. Hayashi, K. Ishihara, Science 2014, 345, 291.
[18] This is in notable agreement with common stoichiometric Hofmann-
Löffler reactions using the analogous hypobromite: a) A. W. Hofmann,
Ber. Dtsch. Chem. Ges. 1883, 16, 558; b) K. Löffler, Ber. Dtsch. Chem.
Ges. 1909, 42, 3427; c) M. E. Wolff, Chem. Rev. 1963, 63, 55.
[19] E. J. Corey, W. R. Hertler, J. Am. Chem. Soc. 1960, 82, 1657.
[20] We cannot completely rule out a potential participation of the reduced
TPT in the N–I activation step. However, this would only permit a
stoichiometric radical recombination from III to IV.
COST Action CA15106 “C
Synthesis (CHAOS)”.
–
H
Activation in Organic
Keywords: photoredox catalysis • iodine catalysis • 1,5-HAT
process • cooperative catalysis • C–H bond amination
[1]
[2]
a) M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
6898 – 6926; b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem.
Rev. 2013, 113, 5322.
For recent examples, see: Pd: a) S. R. Neufeldt, M. S. Sanford, Adv.
Synth. Catal. 2012, 354, 3517; b) D. Kalyani, K. B. McMurtrey, S. R.
Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566; Au: c) M.
N. Hopkinson, B. Sahoo, F. Glorius, Adv. Synth. Catal. 2014, 356,
2794; d) X. Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, J. Am. Chem.
Soc. 2014, 136, 5844; e) A. Tlahuext-Aca, M. N. Hopkinson, R. A.
Garza-Sanchez, F. Glorius, Chem.-Eur. J. 2016, 22, 5909; Ni: f) J. C.
Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433; g) A.
Noble, S. J. McCarver, D. W. C. MacMillan, J. Am. Chem. Soc. 2015,
137, 624; h) L. Chu, J. M. Lipshultz, D. W. C. MacMillan, Angew. Chem.
2015, 127, 8040; Angew. Chem. Int. Ed. 2015, 54, 7929; i) J. J. Murphy,
P. Melchiorre, Nature 2015, 524, 297.
[21] a) M. Seth, T. Ziegler, J. Chem. Theory Comput. 2012, 8, 901; b) Y.
Akinaga, S. Ten-no, Chem. Phys. Lett. 2008, 462, 348.
[22] a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77,
3865; b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996,
77, 3865; c) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.
1997, 78, 1396.
[23] a) B. O. Roos, P. R. Taylor, P. E. Siegbahn, Chem. Phys. 1980, 48,
157; b) H.-J. Werner, P. J. Knowles, J. Chem. Phys. 1985, 82, 5053.
[24] M. E. Casida, J. Mol. Struct. THEOCHEM 2009, 914, 3.
[25] a) S. Grimme, J. Comput. Chem. 2004, 25, 1463. b) S. Grimme, J.
Comput. Chem. 2006, 27, 1787. c) S. Grimme, J. Antony, S. Ehrlich, H.
Krieg, J. Chem. Phys. 2010, 132, 154104.
[3]
[4]
[5]
For reviews on C–H bond functionalization in combination with
photoredox catalysis, see: a) D. C. Fabry, M. Rueping, Acc. Chem. Res.
2016, 49, 1969; b) Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, DOI:
10.1021/acs.chemrev.6b00657 and the references therein.
[26] a) C. J. Stein, M. Reiher, J. Chem. Theory Comput. 2016, 12, 1760; b)
C. J. Stein, M. Reiher, Chimia 2017, 71, 170.
[27] In agreement with our presented calculations, the previous limitation on
sulfonamides[6] is therefore not due to the potential role of this group as
a photosensitizer. For a discussion of the nature of amides and their
amidoyl radicals in Hofmann-Löffler reactions, see: D. Šakić, H. Zipse,
Adv. Synth. Catal. 2016, 358, 3983.
For synthetic applications of hypervalent iodine(III) reagents under
photoredox catalysis, see: a) L. Wang, J. Liu, Eur. J. Org. Chem. 2016,
1813 and references therein; b) R. Sakamoto, T. Inada, S. Selmadurai,
S. A. Moteki, K. Maruoka, Chem. Commun. 2016, 52, 3758.
a) M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am Chem. Soc.
2016, 138, 12692; b) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew.
Chem. 2012, 124, 9092; Angew. Chem. Int. Ed. 2012, 51, 8960.
This article is protected by copyright. All rights reserved.