Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
21 C. D. Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N.
In conclusion, we have demonstrated a redox supramolecular
self-assembly triggered by H2O2. By correlating the occurrence
of supramolecular self-assembly with the nonlinear
fluorescence enhancement, the CAC reflects the threshold of
H2O2. As this redox supramolecular self-assembly could
selectively construct assemblies inside multiple malignant cell
lines, this work reveals that the threshold, rather than an
absolutely low level of ROS is critical in distinguishing cancer
cells from normal ones. In addition to cancer, over-produced
ROS also behave critical roles in pathological conditions such as
inflammation and necrosis. We would expect that the redox
supramolecular self-assembly will be applicable for a vast range
of theranostic purposes with proper molecular design.
DOI: 10.1039/C8CC02648C
15758-15764.
22 Z. G. Song, D. Mao, S. H. P. Sung, R. T. K. Kwok, J. W. Y. Lam,
D. L. Kong, D. Ding and B. Z. Tang, Adv. Mater., 2016, 28
,
7249-7256.
23 Z. Yang, G. Liang and B. Xu, Acc. Chem. Res., 2008, 41, 315-
326.
24 X. W. Du, J. Zhou, J. F. Shi and B. Xu, Chem. Rev., 2015, 115
,
13165-13307.
25 H. M. Wang, Z. Q. Q. Feng and B. Xu, Chem. Soc. Rev., 2017,
46, 2421-2436.
26 G. L. Liang, H. J. Ren and J. H. Rao, Nat. Chem., 2010, 2, 54-
60.
27 Y. Gao, J. F. Shi, D. Yuan and B. Xu, Nat. Commun., 2012,
1033.
3,
This work was supported by National Key R&D Program of
China (2017YFA0205901), NSFC (21675036) and “Hundred
Talents Project” of the Chinese Academy of Sciences for
financial support.
28 D. J. Ye, A. J. Shuhendler, L. N. Cui, L. Tong, S. S. Tee, G.
Tikhomirov, D. W. Felsher and J. H. Rao, Nat. Chem., 2014, 6,
519-526.
29 Y. Kuang, J. F. Shi, J. Li, D. Yuan, K. A. Alberti, Q. B. Xu and B.
Xu, Angew. Chem. Int. Ed., 2014, 53, 8104-8107.
30 R. A. Pires, Y. M. Abul-Haija, D. S. Costa, R. Novoa-Carballal,
R. L. Reis, R. V. Ulijn and I. Pashkuleva, J. Am. Chem. Soc.,
2015, 137, 576-579.
31 A. Tanaka, Y. Fukuoka, Y. Morimoto, T. Honjo, D. Koda, M.
Goto and T. Maruyama, J. Am. Chem. Soc., 2015, 137, 770-
775.
Conflicts of interest
There are no conflicts of interest to declare.
32 J. Li, Y. Kuang, J. F. Shi, et al., Angew. Chem. Int. Ed., 2015,
54, 13307-13311.
Notes and references
33 D. Zhang, G. B. Qi, Y. X. Zhao, S. L. Qiao, C. Yang and H. Wang,
1
2
3
4
W. Droge, Physiol. Rev., 2002, 82, 47-95.
Adv. Mater., 2015, 27, 6125-6130.
M. P. Murphy, Biochem. J., 2009, 417, 1-13.
S. G. Rhee, Science, 2006, 312, 1882-1883.
34 P. Huang, Y. Gao, J. Lin, et al., ACS Nano., 2015, 9, 9517-
9527.
M. Giorgio, M. Trinei, E. Migliaccio and P. G. Pelicci, Nat. Rev.
35 Z. Q. Q. Feng, H. M. Wang, R. Zhou, J. Li and B. Xu, J. Am.
Chem. Soc., 2017, 139, 3950-3953.
Mol. Cell Bio., 2007, 8, 722-728.
5
6
D. Harman, J Gerontol., 1956, 11, 298-300.
36 Y. Yuan, L. Wang, W. Du, Z. L. Ding, J. Zhang, T. Han, L. N. An,
B. D'Autreaux and M. B. Toledano, Nat. Rev. Mol. Cell Bio.,
H. F. Zhang and G. L. Liang, Angew. Chem. Int. Ed., 2015, 54
9700-9704.
,
2007, 8, 813-824.
7
8
9
A. Vezzani, J. French, T. Bartfai and T. Z. Baram, Nat. Rev.
Neurol., 2011, , 31-40.
H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 2010,
362, 329-344.
K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A.
Yamaguchi, H. Imanishi, K. Nakada, Y. Honma and J. Hayashi,
Science, 2008, 320, 661-664.
37 J. X. Aw, Q. Shao, Y. M. Yang, T. T. Jiang, C. Y. Ang and B. G.
7
Xing, Chem. Asian J., 2010, 5, 1317-1321.
38 L. Y. Zhou, X. B. Zhang, Y. F. Lv, C. Yang, D. Q. Lu, Y. Wu, Z.
Chen, Q. L. Liu and W. H. Tan, Anal. Chem., 2015, 87, 5626-
5631.
39 M. Gao, S. W. Li, Y. H. Lin, Y. Geng, X. Ling, L. C. Wang, A. J.
Qin and B. Tang, ACS Sensors, 2016, 1, 179-184.
10 D. Hanahan and R. A. Weinberg, Cell., 2011, 144, 646-674.
11 T. Finkel, M. Serrano and M. A. Blasco, Nature, 2007, 448
40 J. Chen and A. J. McNeil, J. Am. Chem. Soc., 2008, 130
,
,
16496-16497.
767-774.
41 M. He, J. Li, S. Tan, R. Wang and Y. Zhang, J. Am. Chem. Soc.,
2013, 135, 18718-18721.
42 B. C. Dickinson, D. Srikun and C. J. Chang, Curr. Opin. Chem.
Biol., 2010, 14, 50-56.
43 J. Zhou, X. W. Du and B. Xu, Angew. Chem. Int. Ed., 2016, 55
5770-5775.
44 Z. X. Bie, G. S. Li, L. Y. Wang, Y. Lv, J. Y. Niu and S. Gao,
Tetrahedron Lett., 2016, 57, 4935-4938.
45 L. B. Sullivan, D. Y. Gui and M. G. V. Heiden, Nat. Rev. Cancer,
2016, 16, 680-693.
46 E. Dopp, U. von Recklinghausen, L. M. Hartmann, I.
Stueckradt, I. Pollok, S. Rabieh, L. Hao, A. Nussler, C. Katier,
A. V. Hirner and A. W. Rettenmeier, Drug Metab. Dispos.,
2008, 36, 971-979.
12 D. Trachootham, J. Alexandre and P. Huang, Nat. Rev. Drug
Discov., 2009, 8, 579-591.
13 B. C. Dickinson and C. J. Chang, J. Am. Chem. Soc., 2008, 130
9638-9639.
14 N. Karton-Lifshin, E. Segal, L. Omer, M. Portnoy, R. Satchi-
Fainaro and D. Shabat, J. Am. Chem. Soc., 2011, 133, 10960-
10965.
,
,
15 A. R. Lippert, K. R. Keshari, J. Kurhanewicz and C. J. Chang, J.
Am. Chem. Soc., 2011, 133, 3776-3779.
16 V. Carroll, B. W. Michel, J. Blecha, H. VanBrocklin, K. Keshari,
D. Wilson and C. J. Chang, J. Am. Chem. Soc., 2014, 136
,
14742-14745.
17 T. F. Brewer, F. J. Garcia, C. S. Onak, K. S. Carroll and C. J.
Chang, Ann. Rev. Biochem., 2015, 84, 765-790.
18 V. S. Lin, B. C. Dickinson and C. J. Chang, Methods Enzymol.,
2013, 526, 19-43.
19 E. W. Miller, O. Tulyanthan, E. Y. Isacoff and C. J. Chang, Nat.
Chem. Biol., 2007, 3, 263-267.
20 A. J. Shuhendler, K. Y. Pu, L. Cui, J. P. Uetrecht and J. H. Rao,
Nat. Biotechnol., 2014, 32, 373-380.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins