J. P. Knowles, A. Whiting
FULL PAPER
Et2O (250 mL). The solution was washed with satd. aq. NaHCO3
(150 mL), water (150 mL) and brine (150 mL), dried (MgSO4) and
evaporated to give product (40.3 g, 90%) as a yellow oil. IR (film):
Acknowledgments
We are grateful to the Engineering and Physical Sciences Research
Council (EPSRC) for a DTA award to J. P. K. and to the EPSRC
mass spectrometry service at the University of Wales, Swansea.
ν
= 2980, 1473, 1396, 1329, 1311, 1213, 1080 cm–1. 1H NMR
˜
max
(CDCl3, 500 MHz): δ = 0.83 (s, 3 H, CMeMe), 1.06 (s, 3 H,
3
CMeMe), 1.43 (s, 3 H, MeCO2), 1.51 (d, J = 7 Hz, 3 H, MeCH),
3.44 (d, 3J = 11.5 Hz, 1 H, CHH), 3.46 (d, 3J = 11.5 Hz, 1 H,
CHH), 3.59 (t, 3J = 12 Hz, 2 H, CH2) and 4.11 (q, 3J = 7 Hz, 1 H,
CHCl) ppm. 13C NMR (CDCl3, 126 MHz): δ = 15.2 (CMeMe),
19.3 (CMeMe), 22.4 (MeCO2) 22.9 (MeCHCl), 30.1 (CMe2), 60.5
(CHCl), 70.6 (CH2), 70.8 (CH2) and 99.3 (CO2) ppm. MS (CI+):
m/z (%) = 195 [M+, 37Cl], 193 (100) [M+, 35Cl, ], 159, 129. HRMS
(ES+) 193.0989 [M + H+], C9H18ClO2, requires 193.0990.
[1] a) T. Hasegawa, T. Kamiya, T. Henmi, H. Iwasaki, S. Yamatod-
ani, J. Antibiot. 1975, 28, 167–175; b) M. Nakagawa, K. Furih-
ata, Y. Hayakawa, H. Seto, Tetrahedron Lett. 1991, 32, 659–
662; c) M. Nakagawa, Y. Toda, K. Furihata, Y. Hayakawa, H.
Seto, J. Antibiot. 1992, 45, 1133–1138.
[2] a) J. Ishihara, K. Hagihara, H. Chiba, K. Ito, Y. Yanagisawa,
K. Totani, K. Tadano, Tetrahedron Lett. 2000, 41, 1771–1774;
b) B. M. Trost, C. Jiang, Org. Lett. 2003, 5, 1563–1565; c) N. P.
Mulholland, G. Pattenden, Tetrahedron Lett. 2005, 46, 937–
939; d) G. Pattenden, A. J. Blake, L. Constandinos, Tetrahedron
Lett. 2005, 46, 1913–1915; e) M. P. Arrington, A. I. Meyers,
Chem. Commun. 1999, 1371–1372; f) A. W. Kruger, A. I. Mey-
ers, Tetrahedron Lett. 2001, 42, 4301–4304; g) A. G. Waterson,
A. W. Kruger, A. I. Meyers, Tetrahedron Lett. 2001, 42, 4305–
4308; h) G. N. Maw, C. Thirsk, J.-L. Toujas, M. Vaultier, A.
Whiting, Synlett 2004, 1883–1886; i) A. S. Batsanov, J. P.
Knowles, A. Whiting, J. Org. Chem. 2007, 72, 2525–2532.
[3] a) B. M. Trost, A. Fettes, B. T. Shireman, J. Am. Chem. Soc.
2004, 126, 2660–2661; b) D. Bernard, A. Doutheau, J. Gore,
Tetrahedron 1987, 43, 2721–2732.
[4] a) B. A. Patel, J. I. Kim, D. D. Bender, L.-C. Kao, R. F. Heck,
J. Org. Chem. 1981, 46, 1061–1067; b) P. Page, C. Blonski, J.
Perie, Bioorg. Med. Chem. 1999, 7, 1403–1412.
[5] M. M. Kreevoy, R. W. Taft, J. Am. Chem. Soc. 1955, 77, 5590–
5595.
[6] a) T. H. Fife, Acc. Chem. Res. 1972, 5, 264–272; b) S. R. Wann,
M. M. Kreevoy, J. Org. Chem. 1981, 46, 419–423.
[7] C. M. Evans, R. Glenn, A. J. Kirby, J. Am. Chem. Soc. 1982,
104, 4706–4707.
[8] J. L. Jensen, R. Siegel, J. Org. Chem. 1988, 53, 6105–6106.
[9] D. Drake, R. L. Schowen, H. Jayaraman, J. Am. Chem. Soc.
1973, 95, 454–458.
2,5,5-Trimethyl-2-vinyl-1,3-dioxane (12b): To a stirred solution of
potassium hydroxide (28.8 g, 0.50 mol) in ethylene glycol (60 mL)
at 120 °C was added 11b (8.63 g, 44.4 mmol) and the temperature
increased to 160 °C. After 23 h the mixture was cooled, diluted
with water (300 mL) and extracted with Et2O (3ϫ150 mL). The
combined organic phase was washed with water (100 mL) and
brine (100 mL), dried (MgSO4) and evaporated to give product
(4.79 g, 68%) as a pale yellow oil. IR (film): ν
= 2689, 1645,
˜
max
1472, 1396, 1369, 1239, 1089 cm–1. H NMR (CDCl3, 400 MHz):
1
δ = 0.70 (s, 3 H, CMeMe), 1.16 (s, 3 H, CMeMe), 1.40 (s, 3 H,
3
3
MeCO2), 3.32 (d, J = 11 Hz, 2 H, 2ϫCHH), 3.58 (d, J = 11 Hz,
3
3
2 H 2ϫCHH), 5.32–5.39 (m, 2 H, CH2), 5.75 (dd, J = 17.6, J =
10.8 Hz, 1 H, CH=CH2) ppm. 13C NMR (CDCl3, 101 MHz): δ =
22.1 (CMeMe), 22.8 (CMeMe), 28.7 (MeCO2), 30.2 (CMe2), 71.6
(2ϫCH2), 98.8 (CO2), 118.0 (CH2=CH), 138.6 (CH2=CH) ppm.
MS (EI): m/z = 157, 141, 129, 71, 43. HRMS (ES+) 157.1222
[C9H17O2, M + H+, requires 157.1223].
General Procedure for Acetal Hydrolysis: The appropriate acetal
(0.23 mmol) was dissolved in [D8]THF (0.75 mL) and observed by
1H NMR spectroscopy. D2O (0.100 mL) and the appropriate
amount of DCl in D2O (0.010 mL) were added (giving acid concen-
trations of 0.16 and 0.016 for 50% and 5% loadings respec-
tively), the mixture shaken and the hydrolysis followed over time at
[10] T. H. Fife, L. Hagopian, J. Org. Chem. 1966, 31, 1772–1775.
[11] R. F. Atkinson, T. C. Bruice, J. Am. Chem. Soc. 1974, 96, 819–
825.
1
293 K by H NMR spectroscopy.
Supporting Information (see also the footnote on the first page of
Received: March 19, 2007
this article): All kinetic NMR spectroscopic data is available.
Published Online: May 15, 2007
3368
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 3365–3368