Page 5 of 6
Journal of the American Chemical Society
fluorination of α-branched aldehydes and subsequent conversion to
catalyzed asymmetric allylic alkylation of acyclic -ketoesters. J.
Am. Chem. Soc. 2013, 135, 17298–17301. (b) Brewitz, L.; Arteaga,
F. A.; Yin, L.; Alagiri, K.; Kumagai, N.; Shibasaki, M. Direct
catalytic asymmetric Mannich-type reaction of - and -fluorinated
amides. J. Am. Chem. Soc. 2015, 137, 15929–15932. (c) Trost, B. M.;
Saget, T.; Lerchen, A.; Hung, C.-I. Catalytic asymmetric Mannich
reactions with fluorinated aromatic ketones: Efficient access to chiral
-fluoroamine. Angew. Chem. Int. Ed. 2016, 55, 781–784. (d) Sun,
B.; Balaji, P. V.; Kumagai, N.; Shibasaki, M. -Halo amides as
competent latent enolates: direct catalytic asymmetric Mannich-type
reactions. J. Am. Chem. Soc. 2017, 139, 8295–8301. (e) Trost, B. M.;
Saget, T.; Hung, C. I. Efficient access to chiral trisubstituted
aziridines via catalytic enantioselective aza-Darzens reactions.
Angew. Chem. Int. Ed. 2017, 56, 2440–2444.
α-hydroxyacetals via stereospecific C–F bond cleavage. Chem. Sci.
2016, 7, 1388–1392. (k) You, Y.; Zhang, L.; Luo, S. Reagent-
controlled enantioselectivity switch for the asymmetric fluorination
of β-ketocarbonyls by chiral primary amine catalysis. Chem. Sci.
2017, 8, 621–626.
1
2
3
4
5
6
7
8
(14) (a) Hu, D. X.; Shibuya, G. M.; Burns, N. Z. Catalytic
enantioselective dibromination of allylic alcohols. J. Am. Chem. Soc.
2013, 135, 12960–12963. (b) Hu, D. X.; Seidl, F. J.; Bucher, C.;
Burns, N. Z. Catalytic chemo-, regio-, and enantioselective
bromochlorination of allylic alcohols. J. Am. Chem. Soc. 2015, 137,
3795–3798. (c) Bucher, C.; Deans, R. M.; Burns, N. Z. Highly
selective synthesis of halomon, plocamenone, and isoplocamenone. J.
Am. Chem. Soc. 2015, 137, 12784–12787. (d) Landry, M. L.; Hu, D.
X.; Mckenna, G. M.; Burns, N. Z. Catalytic enantioselective
dihalogenation and the selective synthesis of (−)-deschloromytilipin
A and (−)-danicalipin A. J. Am. Chem. Soc. 2016, 138, 5150–5158.
(e) Burckle, A. J.; Vasilev, V. H.; Burns, N. Z. A unified approach
for the enantioselective synthesis of the brominated chamigrene
sesquiterpenes. Angew. Chem. Int. Ed. 2016, 55, 11476–11479.
(15) For some selected recent examples, see: (a) Snyder, S. A.; Tang, Z.-
Y.; Gupta, R. Enantioselective total synthesis of (−)-napyradiomycin
A1 via asymmetric chlorination of an isolated olefin. J. Am. Chem.
Soc. 2009, 131, 5744–5745. (b) Nicolaou, K. C.; Simmons, N. L.;
Ying, Y.; Heretsch, P. M.; Chen, J. S. Enantioselective
dichlorination of allylic alcohols. J. Am. Chem. Soc. 2011, 133,
8134–8137. (c) Banik, S. M.; Medley, J. W.; Jacobsen, E. N.
Catalytic, asymmetric difluorination of alkenes to generate
difluoromethylated stereocenters. Science 2016, 353, 51–54. (d)
Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. Enantioselective,
catalytic fluorolactonization reactions with a nucleophilic fluoride
source. J. Am. Chem. Soc. 2016, 138, 13858–13861. (e) Samanta, R.
C.; Yamamoto, H. Catalytic asymmetric bromocyclization of
polyenes. J. Am. Chem. Soc. 2017, 139, 1460–1463. (f) Soltanzadeh,
B.; Jaganathan, A.; Yi, Y.; Yi, H.; Staples, R. J.; Borhan, B. Highly
regio- and enantioselective vicinal dihalogenation of allyl amides. J.
Am. Chem. Soc. 2017, 139, 2132–2135. (g) Mennie, K. M.; Banik, S.
M.; Reichert, E. C.; Jacobsen, E. N. Catalytic diastereo- and
enantioselective fluoroamination of alkenes. J. Am. Chem. Soc. 2018,
140, 4797–4802. (h) Lu, Y.; Nakatsuji, H.; Okumura, Y.; Yao, L.;
Ishihara, K. Enantioselective halo-oxy- and halo-azacyclizations
induced by chiral amidophosphate catalysts and halo-Lewis acids. J.
Am. Chem. Soc. 2018, 140, 6039–6043.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Tan, Y.; Luo, S.; Li, D.; Zhang, N.; Jia, S.; Liu, Y.; Qin, W.; Song, C.
E.; Yan, H. Enantioselective synthesis of anti−syn-trihalides and
anti−syn−anti-tetrahalides via asymmetric -elimination. J. Am.
Chem. Soc. 2017, 139, 6431–6436.
(21) (a) Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. Direct asymmetric
vinylogous and bisvinylogous Mannich-type reaction catalyzed by a
copper(I) complex. J. Am. Chem. Soc. 2017, 139, 2196–2199. For a
selected review on the catalytic asymmetric Mannich-type reaction
and its application in organic synthesis, see: (b) Casiraghi, G.;
Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. The vinylogous aldol
and related addition reactions: ten years of progress. Chem. Rev.
2011, 111, 3076–3154.
(22) (a) Trost, B. M. The atom economy--a search for synthetic efficiency.
Science 1991, 254, 1471–1477. (b) Handbook of Green Chemistry-
Green Catalysis; Anasta, P. T.; Crabtree, R. H., Eds.; Wiley-VCH:
Weinheim, 2009. (c) Newhouse, T.; Baran, P. S.; Hoffmann, R. W.
The economies of synthesis. Chem. Soc. Rev. 2009, 38, 3010–3021.
(23) For a book focusing on the copper-catalyzed asymmetric reactions,
see: Alexakis, A.; Krause, N.; Woodward, S. Copper-catalyzed
asymmetric synthesis; Wiley-VCH: Weinheim, 2014. The earliest
asymmetric reactions with chiral copper catalysts (such as from the
Carreira group, the Buchwald group, the Evans group and the Corey
group) could be found in this specialized book.
(24) Yoshimura, F.; Kowata, A.; Tanino, K. Stereocontrolled synthesis of
carbocyclic compounds with a quaternary carbon atom based on SN2′
alkylation of ,-epoxy-,-unsaturated ketones. Org. Biomol. Chem.
2012, 10, 5431–5442.
(25) (a) Huang, P.-Q. Asymmetric synthesis of hydroxylated pyrrolidines,
piperidines and related bioactive compounds: from N-acyliminium
chemistry to N--carbanion chemistry. Synlett 2006, 1133–1149. (b)
Källström, S.; Leino, R. Synthesis of pharmaceutically active
compounds containing a disubstituted piperidine framework. Bioorg.
Med. Chem. Lett. 2008, 16, 601–635. (c) A great number of
piperidine derivatives [analogues of (+)-L-733,060 and (+)-CP-
99,994] was found in patents through Reaxys and SciFinder data
search engines because of their bioactivity in clinical and preclinical
studies.
(26) (a) Baker, R.; Harrison, T.; Swain, C. J.; Williams, B. J. Eur. Patent,
0528495A1, 1993. (b) Harrison, T.; Williams, B. J.; Swain, C. J.;
Ball, R. G. Piperidine-ether based hNK1 antagonists 1: determination
of the relative and absolute stereochemical requirements. Bioorg.
Med. Chem. Lett. 1994, 4, 2545–2550.
(27) (a) Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K. P.;
Snider, R. M. Discovery of a potent substance P antagonist:
recognition of the key molecular determinant. J. Med. Chem. 1992,
35, 4911–4913. (b) Rosen, T.; Seeger, T. F.; Mclean, S.; Desai, M.
C.; Guarino, K. J.; Bryce, D.; Pratt, K.; Heym, J. Synthesis, in vitro
binding profile, and autoradiographic analysis of [3H]-cis-3-[(2-
(16) For three selected recent examples, see: (a) Shibatomi, K.; Soga, Y.;
Narayama, A.; Fujisawa, I.; Iwasa, S. Highly enantioselective
chlorination of β-keto esters and subsequent SN2 displacement of
tertiary chlorides:
a flexible method for the construction of
quaternary stereogenic centers. J. Am. Chem. Soc. 2012, 134, 9836–
9839. (b) Yin, Q.; Wang, S.-G.; Liang, X.-W.; Gao, D.-W.; Zheng, J.;
You, S.-L. Organocatalytic asymmetric chlorinative dearomatization
of naphthols. Chem. Sci. 2015, 6, 4179–4183. (c) Shibatomi, K.;
Kitahara, K.; Sasaki, N.; Kawasaki, Y.; Fujisawa, I.; Iwasa, S.
Enantioselective decarboxylative chlorination of β-ketocarboxylic
acids. Nat. Commun. 2017, 8, 15600. More references cited in these
papers.
(17) (a) Wang, Y.; Liu, X.; Deng, L. Dual-function cinchona alkaloid
catalysis: catalytic asymmetric tandem conjugate addition-
protonation for the direct creation of nonadjacent stereocenters. J.
Am. Chem. Soc. 2006, 128, 3928–3930. (b) Wang, B.; Wu, F.; Wang,
Y.; Liu, X.; Deng, L. Control of diastereoselectivity in tandem
asymmetric reactions generating nonadjacent stereocenters with
bifunctional catalysis by cinchona alkaloids. J. Am. Chem. Soc. 2007,
129, 768–769.
methoxybenzyl)amino]-2-phenylpiperidine,
a highly potent and
(18) For some selected recent examples, see: (a) Kobayashi, S.; Endo, T.;
Ueno, M. Chiral zinc-catalyzed asymmetric -alkylallylation and -
chloroallylation of aldehydes. Angew. Chem. Int. Ed. 2011, 50,
12262–12265. (b) van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.;
Hoveyda, A. H. Lewis acid catalyzed borotropic shifts in the design
of diastereo- and enantioselective -additions of allylboron moieties
to aldimines. Angew. Chem. Int. Ed. 2016, 55, 4701–4706. (c) Tekle-
Smith, M. A.; Williamson, K. S.; Hughes, I. F.; Leighton, J. L.
Direct, mild, and general n-Bu4NBr-catalyzed aldehyde
allylsilylation with allyl chlorides. Org. Lett. 2017, 19, 6024–6027.
(19) For some selected recent examples, see: (a) Liu, W. B.; Reeves, C.
M.; Stoltz, B. M. Enantio-, diastereo-, and regioselective iridium-
selective nonpeptide substance P receptor antagonist radioligand. J.
Med. Chem. 1993, 36, 3197–3201.
(28) (a) Calvez, O.; Langlois, N. Stereoselective synthesis of (2S,3S)-3-
hydroxy-2-phenylpiperidines, precursors of non-peptidic substance P
antagonists. Tetrahedron Lett. 1999, 40, 7099–7100. (b) Garrido, N.
M.; García, M.; Sánchez, M. R.; Díez, D.; Urones, J. G.
Enantioselective synthesis of (+)-L-733,060 and (+)-CP-99,994:
application of an Ireland-Claisen rearrangement/Michael addition
domino sequence. Synlett 2010, 387–390. (c) Liu, Y.-W.; Mao, Z.-Y.;
Ma, R.-J.; Yan, J.-H.; Si, C.-M.; Wei, B.-G. Divergent syntheses of
L-733, 060 and CP-122721 from functionalized piperidinones made
by one-pot tandem cyclization. Tetrahedron 2017, 73, 2100–2108.
ACS Paragon Plus Environment