7150
M. Turbiez et al. / Tetrahedron Letters 50 (2009) 7148–7151
E2
- 1e-
E1
- 1e-
E2
- 1e-
E1
- 1e-
2b2+
.
2b+
2a2+
.
2b
2a+
2a
+ 1e-
+ 1e-
+ 1e-
fast
+ 1e-
fast
Dimerization slow
E3
- 1e-
.
3+
2+
(2a)2
(2a)2
fast
σ-dimer
Scheme 4.
conjugated chains by the multiplication of Sꢀ ꢀ ꢀO intramolecular
interactions between the median thienothiophene unit and the
external EDOT moieties.22 Thus, the synergy of the structural and
electronic effects of the methoxy groups leads to a higher rigidity
of the conjugated systems and to a lower HOMO–LUMO gap.
In conclusion, we have synthesized a series of hybrid oligomers
combining EDOT and thienothiophene units. These oligomers pres-
ent a planar conformation due to the association of the intrinsically
rigid thieno[3,2-b]thiophene unit together with the self-rigidifica-
tion of the conjugated chain by Sꢀ ꢀ ꢀO intramolecular interactions.
The radical cations of oligomers substituted with n-hexyl chains
present a tendency to dimerize while with hexylsulfanyl group as
substituent the stability of the radical cations is strongly improved.
The electrochemical properties of oligomers have been analyzed
by cyclic voltammetry (CV) and the oxidation potentials are gath-
ered in Table 1. The CV traces of oligomers 1a and 2a are strongly
dependent on the scan rates (Fig. 2 for 2a). Thus at 100 mV sꢁ1 scan
rate, the CV of 1a and 2a shows a first partially reversible oxidation
peak followed by a second reversible peak and then by a third irre-
versible peak. By increasing the rate of the scan in potential, the
reversibility of the first peak increases while the intensity of the
third peak strongly decreases. From scan rate of 1 V sꢁ1, the two
first oxidation waves are fully reversible while the third oxidation
peak is quasi vanished. At high scan rate the CV corresponds to the
subsequent formation of the radical cation 1a+Å or 2a+Å at potential
E1 and then a dication 1a2+ or 2a2+ at potential E2. At lower scan
References and notes
1. Skotheim, T. A.; Reynolds, J. R. Handbook of Conducting Polymers, 3rd ed.; CRC
Press: Boca Raton, FL, 2007.
2. Mishra, A.; Ma, C.-Q.; Bauerle, P. Chem. Rev. 2009, 109, 1141–1276.
3. Barbarella, G.; Melucci, M.; Sotgiu, G. Adv. Mater. 2005, 17, 1581–1593.
4. Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761–1775.
5. Roncali, J. Chem. Rev. 1997, 97, 173–205.
6. Ahmed, M. O.; Wang, C.; Keg, P.; Pisula, W.; Lam, Y.-M.; Ong, B. S.; Ng, S.-C.;
Chen, Z.-K.; Mhaisalkar, S. G. J. Mater. Chem. 2009, 19, 3449–3456.
7. Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.; Baumgarten, M.;
Pisula, W.; Müllen, K. Adv. Mater. 2008, 21, 213–216.
8. McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline, R. J.; Cölle,
M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; Hamilton, R.; Richter, L.;
Salleo, A.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W. Adv. Mater. 2009,
21, 1091–1109.
9. He, Y.; Wu, W.; Zhao, G.; Liu, Y.; Li, Y. Macromolecules 2008, 41, 9760–9766.
10. Zhang, X. N.; Kohler, M.; Matzger, A. J. Macromolecules 2004, 37, 6306–6315.
11. SanMiguel, L.; Matzger, A. J. Macromolecules 2007, 40, 9233–9237.
12. Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.;
Chen, S.; Zhan, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127,
13281–13286.
13. Zhang, X. N.; Cote, A. P.; Matzger, A. J. J. Am. Chem. Soc. 2005, 127, 10502–
10503.
14. He, M.; Zhang, F. J. Org. Chem. 2007, 72, 442–451.
rate the CV data can be interpreted by the formation of a dimeric
2þ
dication ð1aÞ2 or ð2aÞ22þ, named
r-dimer, by coupling of the rad-
ical cation (Scheme 4). Such dimerization processes have already
been described for bithiophene derivatives.23,24
The kinetic of the dimerization process of the radical is not very
fast and an amount of radical cation is not dimerized when the po-
tential reaches E2 allowing the formation of dication 1a2+ or 2a2+
.
The third oxidation potential (E3) corresponds to the oxidation step
of the -dimer involving the transfer of one electron followed by
another chemical reaction. The intensity of this oxidation step al-
lows evidencing the formation of the -dimer. By increasing the
scan rate, the time scale allowing the coupling reaction becomes
shorter, thus limiting the formation of -dimer and by conse-
r
r
15. Navacchia, M. L.; Melucci, M.; Favaretto, L.; Zanelli, A.; Gazzano, M.; Bongini,
A.; Barbarella, G. Org. Lett. 2008, 10, 3665.
16. Turbiez, M.; Frère, P.; Leriche, P.; Mercier, N.; Roncali, J. Chem. Commun. 2005,
r
1161–1163.
quence decreasing the intensity of the third oxidation peak.
The CV of compounds 1b and 2b end capped by hexylsulfanyl
chains shows two reversible close oxidation waves, even for scan
rate inferior to 100 mV sꢁ1, corresponding to the successive forma-
tion of radical cation and dication. Thus the presence of the sulfur
atoms on the external positions strongly stabilizes the radical cat-
ion which does not present the dimerization process.25,26
Compared to tetrathiophene derivatives 9a and 9b, the first oxi-
dation potential of 1a and 1b is positively shifted as expected by
the shortening of the conjugated chain. Moreover, the higher dif-
17. DeCremer, L.; Verbiest, T.; Koeckelberghs, G. Macromolecules 2008, 41, 568–
578.
18. Turbiez, M.; Frère, P.; Roncali, J. J. Org. Chem. 2003, 68, 5357–5360.
19. All new compounds exhibited spectral properties consistent with the assigned
structures: Compound 1a: orange solid, mp 142 °C, 1H NMR (500 MHz) 0.89 (t,
3J = 6.8 Hz, 6H), 1.33 (m, 12H), 1.61 (m, 4H), 2.64 (m, 4H, 3J = 7.2 Hz), 4.23 (m, 4H),
4.32 (m, 4H), 7.28 (s, 2H). 13C NMR (125.7 Hz) 14.1, 22.6, 25.7, 28.8, 30.3, 31.5,
64.5, 65.1, 108.4, 114.1, 116.6, 136.0, 137.5, 137.6, 137.7. MS Maldi-tof calcd for
C30H36O4S4: 588.15; found: 588.14. Compound 2a: orange solid, mp 202 °C, 1
H
NMR (500 MHz) 0.89 (t, 3J = 6.8 Hz, 6H), 1.33 (m, 12H), 1.63 (m, 4H), 2.65 (m, 4H,
3J = 7.1 Hz), 4.09 (s, 6H), 4.23 (m, 4H), 4.33 (m, 4H). 13C NMR (125.7 Hz) 14.1, 22.5,
25.8, 28.8, 30.4, 31.5, 59.4, 64.5, 65.2, 106.1, 117.3, 126.2, 136.8, 136.9, 144.7. MS
Maldi-tof Calcd for C32H40O6S4: 648.17; found: 648.09. Compound 1b: orange
solid, mp 140 °C, 1H NMR (500 MHz) 0.90 (t, 3J = 6.8 Hz, 6H), 1.28 (m, 8H), 1.40
(m, 4H), 1.62 (m, 4H), 2.73 (t, 4H, 3J = 7.5 Hz), 4.34 (m, 8H), 7.34 (s, 2H). 13C NMR
(125.7 Hz) 13.9, 22.5, 28.1, 29.3, 31.3, 38.5, 64.7, 64.9, 109.3, 115.1, 118.6, 136.5,
138.5, 139.0, 140.6. MS Maldi-tof calcd for C30H36O4S6: 652.09; found: 652.14.
Compound 2b: orange solid, mp 136 °C, 1H NMR (500 MHz) 0.88 (t, 3J = 7.0 Hz,
6H), 1.25 (m, 8H), 1.41 (m, 4H), 1.63 (m, 4H), 2.75 (t, 4H, 3J = 7.5 Hz), 4.11 (s, 6H),
4.25 (m, 4H), 4.36 (m, 4H). 13C NMR (125.7 Hz) 14.1, 22.4, 28.0, 29.5, 32.3, 38.9,
59.9, 64.7, 64.9, 109.3, 115.1, 118.6, 136.5, 138.5, 140.6, 146.3. MS Maldi-tofcalcd
for C32H40O6S6: 712.12; found: 712.08.
ference
D
E = E2 ꢁ E1 observed for 1a and 1b corresponds to an in-
crease of the coulombic repulsion between the two positive
charges in the dication state. It can be noted that the lower differ-
ence
DE observed for 9b, 1b and 2b compared to 9a, 1a and 2a is an
indication of the strong participation of the terminal sulfur atoms
of the hexylsulfanyl chains for stabilizing the positive charge of
the dication in the external position. Finally, by comparison with
1a and 1b, the introduction of the methoxy group on the central
thienothiophene unit provokes a negative shift of the oxidation
potentials for 2a and 2b due to the mesomeric donor effect of
the ether groups.
20. Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J. Chem. Eur.
J. 2005, 11, 3742–3752.
21. Compound 9b has been synthesized by Stille coupling between
dibromobithiophene and 2.5 equiv of 7b. Orange solid, mp = 118 °C, 1H NMR
(500 MHz) 0.90 (t, 3J = 6.8 Hz, 6H), 1.28 (m, 8H), 1.40 (m, 4H), 1.62 (m, 4H), 2.73