3 M. A. Ward and T. K. Georgiou, Polymers, 2011, 3, 1215–1242.
4 D. Zhang, S. H. Lahasky, L. Guo, C.-U. Lee and M. Lavan,
Macromolecules, 2012, DOI: 10.1021/ma202319g.
5 R. Duncan, Nat. Rev. Drug Discovery, 2003, 2, 347–360.
6 B. S. Kim, I. K. Park, T. Hoshiba, H. L. Jiang, Y. J. Choi,
T. Akaike and C. S. Cho, Prog. Polym. Sci., 2011, 36, 238–268.
7 S. M. Miller, R. J. Simon, S. Ng, R. N. Zuckermann, J. M. Kerr
and W. H. Moos, Drug Dev. Res., 1995, 35, 20–32.
Scheme 3 Thiol–ene step growth polymerization of 6. (i) 1,3-propane-
dithiol, EtOH, hn, r.t.
8 N. P. Chongsiriwatana, J. A. Patch, A. M. Czyzewski, M. T. Dohm,
A. Ivankin, D. Gidalevitz, R. N. Zuckermann and A. E. Barron,
Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 2794–2799.
9 S. A. Fowler and H. E. Blackwell, Org. Biomol. Chem., 2009, 7,
1508–1524.
10 H. K. Murnen, A. M. Rosales, J. N. Jaworsk, R. A. Segalman and
R. N. Zuckermann, J. Am. Chem. Soc., 2010, 132, 16112–16119.
11 F. Gelain, D. Silva, A. Caprini, F. Taraballi, A. Natalello, O. Villa,
K. T. Nam, R. N. Zuckermann, S. M. Doglia and A. Vescovi, ACS
Nano, 2011, 5, 1845–1859.
MALDI-ToF mass spectrum of 8B is shown in Fig. 1b,
confirming the expected chemical structure of the glycopoly-
peptoid, Dm = 461.6 Da ([C19H27NO10S]+ = 461.1 g molꢀ1).
However, the mass spectrum reveals traces of a second, not
identified yet, homologous series with a mass difference of
either ꢀ99.3 or +362.1 Da (compared to the main series).
Exceptionally, these preliminary investigations demonstrated
that the glycosylation of 7d, with HS-Glc, was readily achievable
under environmentally benign conditions (i.e. in an aqueous
solution at room temperature). The reaction can be carried out
in the presence (8C) or absence (8C0) of a photo initiator
(HEMP), although the addition rate was much higher in the
first case (>99% vs. 57% conversion after 12 hours, Table 2).
Finally, we attempted polymerization of 6 via thiol–ene and
acyclic diene metathesis (ADMET) step growth polymeriza-
tions (ESIw).40 Copolymerization of 6 and 1,3-propanedithiol
(Scheme 3) yielded polymer 9 with an apparent molecular
weight of Mn B 2.0 kg molꢀ1, PDI B 2.2 (SEC). ADMET
polymerization of 6 using a 2nd generation Hoveyda–Grubbs
catalyst failed, presumably due to a suspected coordination of
the amide group to the metal center.41
12 R. D. Haynes, R. J. Meagher and A. E. Barron, Biopolymers, 2011,
96, 702–707.
13 B. Sanii, R. Kudirka, A. Cho, N. Venkateswaran, G. K. Olivier,
A. M. Olson, H. Tran, R. M. Harada, L. Tan and
R. N. Zuckermann, J. Am. Chem. Soc., 2011, 133, 20808–20815.
¨
14 G. Hao, A. Hajibeigi, L. M. D. Leon-Rodrıguez, O. K. Oz and
´
´
X. Sun, Am. J. Nucl. Med. Mol. Imaging, 2011, 1, 65–75.
15 K. Dhaliwal, G. Escher, A. Unciti-Broceta, N. McDonald,
A. J. Simpson, C. Haslett and M. Bradley, MedChemComm,
2011, 2, 1050–1053.
16 C. L. Chen, J. H. Qi, R. N. Zuckermann and J. J. DeYoreo, J. Am.
Chem. Soc., 2011, 133, 5214–5217.
17 R. N. Zuckermann, Biopolymers, 2011, 96, 545–555.
18 A. S. Culf and R. J. Ouellette, Molecules, 2010, 15, 5282–5335.
19 B. C. Gorske, S. A. Jewell, E. J. Guerard and H. E. Blackwell, Org.
Lett., 2005, 7, 1521–1524.
20 H. J. Olivos, P. G. Alluri, M. M. Reddy, D. Salony and
T. Kodadek, Org. Lett., 2002, 4, 4057–4059.
In summary, we described a de novo synthesis of poly(N-allyl
glycine)s and the subsequent characterization revealed a well-
defined bio-inspired material (Mn B 1.5–10.5 kg molꢀ1, PDI =
1.1–1.4) with good dissolution in organic solvents and modest
21 C. Caumes, T. Hjelmgaard, R. Remuson, S. Faure and
C. Taillefumier, Synthesis, 2011, 257–264.
22 N. Hadjichristidis, H. Iatrou, M. Pitsikalis and G. Sakellariou,
Chem. Rev., 2009, 109, 5528–5578.
23 H. R. Kricheldorf, C. V. Lossow, N. Lomadze and G. Schwarz,
J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4012–4020.
24 H. R. Kricheldorf, C. Von Lossow and G. Schwarz, J. Polym. Sci.,
Part A: Polym. Chem., 2006, 44, 4680–4695.
25 H. R. Kricheldorf, C. Von Lossow and G. Schwarz, J. Polym. Sci.,
Part A: Polym. Chem., 2005, 43, 5690–5698.
26 H. R. Kricheldorf, C. von Lossow and G. Schwarz, Macromolecules,
2005, 38, 5513–5518.
27 L. Guo and D. H. Zhang, J. Am. Chem. Soc., 2009, 131,
18072–18074.
solubility in water. High degrees of polymerization (n B 100)
%
could be achieved via heterophase methodology within
relatively short reaction times (12 hours vs. weeks). Poly(N-allyl
glycine)s were modified with thio-glycerol or -glucose by
utilizing UV light in combination with photo initiators (DMPA
or HEMP) in which the degree of modification of the allyl side
chains was found to be Z 94%. Notably, we demonstrated that
the post modifications of these polymers, with unprotected thio-
sugars, are feasible in an aqueous medium.
28 L. Guo, S. H. Lahasky, K. Ghale and D. Zhang, J. Am. Chem.
Soc., 2012, 134, 9163–9171.
Additionally, an unexpected dimeric side product of the
distillation of N-allyl glycine NCA, 1,4-diallylpiperazine-2,5-
dione, was explored for thiol–ene and ADMET polymeriza-
tions, where the first produced a low molecular weight polymer.
Although there is intrinsic biocompatibility, bioactivity
(modification with active groups), and increased proteolytic
resistance (vide supra), further investigations need to be carried
out to verify this potential as a new class of bio-materials.
Steffen Weidner (MALDI-ToF MS; BAM), Olaf Niemeyer
29 C. Fetsch, A. Grossmann, L. Holz, J. F. Nawroth and
R. Luxenhofer, Macromolecules, 2011, 44, 6746–6758.
30 J. Sun and H. Schlaad, Macromolecules, 2010, 43, 4445–4448.
31 C. Diehl and H. Schlaad, Macromol. Biosci., 2009, 9, 157–161.
32 J. R. Kramer and T. J. Deming, J. Am. Chem. Soc., 2012, 134,
4112–4115.
33 D. Pati, A. Y. Shaikh, S. Hotha and S. Sen Gupta, Polym. Chem.,
2011, 2, 805–811.
34 K. Kempe, A. Krieg, C. R. Becer and U. S. Schubert, Chem. Soc.
Rev., 2012, 41, 176–191.
35 R. Hoogenboom, Angew. Chem., Int. Ed., 2010, 49, 3415–3417.
36 J. F. Reichwein and R. M. J. Liskamp, Eur. J. Org. Chem., 2000,
2335–2344.
(NMR), Marlies Grawert (SEC), Sylvia Pirok (EA), and Irina
¨
Shekova (TGA; all MPI-KG) are thanked for their contribu-
tions to this work. This work was financially supported by the
Max Planck Society.
37 G. J. M. Habraken, K. H. R. M. Wilsens, C. E. Koning and
A. Heise, Polym. Chem., 2011, 2, 1322–1330.
38 H. R. Kricheldorf, C. Von Lossow and G. Schwarz, Macromol.
Chem. Phys., 2005, 206, 282–290.
39 H. Kanazawa, A. Inada and N. Kawana, Macromol. Symp., 2006,
242, 104–112.
Notes and references
40 O. Turunc¸ and M. A. R. Meier, Green Chem., 2011, 13, 314–320.
¨
41 K. Terada, E. B. Berda, K. B. Wagener, F. Sanda and T. Masuda,
¨
1 A. Grauer and B. Konig, Eur. J. Org. Chem., 2009, 5099–5111.
¨
2 H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur
and A. Bertin, Macromol. Rapid Commun., 2010, 31, 511–525.
Macromolecules, 2008, 41, 6041–6046.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 7835–7837 7837