by coordinating to a chiral Lewis acid, and the nucleophiles
react favorably with the homogeneous electrophile/catalyst
complexes to give enantiomerically enriched products (Lewis
acid catalysis); or (2) less reactive nucleophiles coordinate
to a chiral Lewis base, and the resulting nucleophile/Lewis
base complexes react smoothly with the electrophiles to give
optically active products (Lewis base-promoted reaction).
When the components are too sluggish and neither meth-
odology works effectively, a double activation approach may
Figure 1. Chiral salen ligands evaluated in this study.
5
be the choice. While a bifunctional catalyst integrates a
6
Lewis acid and a Lewis base moiety into one molecule, the
double-activation method mixes the Lewis acid with the
Lewis base in one flask, and they activate the electrophiles
and nucleophiles, respectively.
Previously, our group has reported a titanium-catalyzed
13
asymmetric hydrocyanation of aldehydes, and an N-oxide-
14
promoted enantioselective Strecker reaction. Also, we have
disclosed a bifunctional N-oxide titanium-catalyzed enanti-
oselective cyanosilylation of ketones, in which the metal
titanium played the role of a Lewis acid and the N-O dipolar
moiety a Lewis base to activate the keto group and TMSCN,
Optically active cyanohydrins are synthetically important
building blocks and chiral auxiliaries in the context of
7
asymmetric synthesis. Moreover, enantioselective construc-
tion of quaternary carboncenters via a C-C bond-forming
process with keto electrophiles has gained more and more
attention in recent years.6 Asymmetric addition of TMSCN
1
5
respectively. Accordingly, the Ti-salen complexes and
N-oxides would be the catalysts for the double-activation
method.
b,8
(TMS ) trimethylsilyl) to ketones is the most popular
strategy to produce optically active cyanohydrins.
Belokon has reported a Ti-catalyzed cyanosilylation of
In a preliminary study, 1a-Ti(OiPr)
are employed as the catalysts. Fortunately, the product
4
complex and N-oxide
1
6
2
2
aromatic ketones by utilizing a C -symmetric Schiff base as
9
the chiral ligand. Shibasaki has developed a novel bifunc-
tional catalyst with a phosphoryl moiety to promote the
10
addition of TMSCN to aromatic and aliphatic ketones. Deng
has outlined a method for cyanide addition to ketones with
cyanoformate by employing Sharpless’s cinchona derivatives
as catalysts.11 Most recently, Snapper has disclosed an
aluminum-catalyzed enantioselective addition of TMSCN to
aromatic and aliphatic ketones using recyclable peptide as
Table 1. Addition of TMSCN to Acetophenone Catalyzed by
1a-Ti(OiPr)
and Lewis Basesa
4
yield (%)b
ee (%)c
entry
Lewis base
temp (°C)
1
2
3
4
5
6
7
8
9d
2
0
0
0
0
0
95
3
0
67
34
0
HMPA
PyNO
NMNO
TMNO
2
2
2
2
2
2
2
12
the ligand. Despite these advances, some pressing problems
still exist such as the comparatively long route of synthesis
and screening of the candidate ligands. This letter reports
the development of a new double activation catalyst system
and the application to the enantioselective addition of
TMSCN to ketones with an easily accessible Ti-salen
complex as the Lewis acid and achiral N-oxide as the Lewis
base (Figure 1).
32
26
62
30
9
25
54
90
75
60
65
81
76
59
74
73
74
84
-20
-40
-78
0
0
0
-20
1
0e
1 f
1
2g
1
a
(
5) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394.
Conditions: 20 mol % 1a-Ti(OiPr)4 complex, 20 mol % base,
(6) For review on bifunctional catalysis, see: (a) Shibasaki, M.;
concentration of acetophenone ) 0.12 M in CH2Cl2 (unless otherwise
indicated), 84 h. Isolated yield. c Determined by chiral GC analysis on
Chirasil DEX CB. d 1a-Ti(OiPr)4 (2 mol %), 2 mol % 2, concentration of
b
Yoshikawa, N. Chem. ReV. 2002, 102, 2187. (b) DiMauro, E. F.; Kozlowski,
M. C. J. Am. Chem. Soc. 2002, 124, 12668. (c) Hamashima, Y.; Sawasa,
D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 2641.
e
acetophenone ) 0.12 M, 84 h. 1a-Ti(OiPr)4 (2 mol %), 2 mol % 2,
f
(
7) Gregory, R. J. H. Chem. ReV. 1999, 99, 3649.
concentration of acetophenone 0.23 M, 84 h. 1a-Ti(OiPr)4 (2 mol %), 2
g
(8) (a) For a review on catalytic enantioselective construction of
mol % 2, concentration of acetophenone 0.52 M, 84 h. Optimized
quaternary carbon stereogenic centers, see: Cory, E. J.; Guzman-Perez, A.
Angew. Chem., Int. Ed. 1998, 37, 388. For recent examples, see: (b) Dosa,
P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (c) Ramon, D. J.; Yus,
M. Tetrahedron Lett. 1998, 39, 1239. (d) Casolari, S.; D’Addario, D.;
Tagliavini, E. Org. Lett. 1999, 1, 1061. (e) Garcfa, C.; LaRochelle, L. K.;
Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970.
conditions: 2 mol % 1a-Ti(OiPr)4, 1 mol % 2, concentration of acetophe-
none ) 1.1 M, 120 h. HMPA ) hexamethyl-phosphorus triamide; PyNO
) pyridine N-oxide; NMNO ) N-methylmorpholine N-oxide; TMNO )
trimethylamine N-oxide.
(
9) (a) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M.; Tararov,
V. I. Tetrahedron Lett. 1999, 40, 8147.
10) (a) Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
000, 122, 7412. (b) Hamashima, Y.; Kanai, M.; Shibasaki, M. Tetrahedron
is obtained in 95% yield with 67% ee after 84 h (Table 1,
entry 1). With respect to reactivity and enantioselectivity,
(
2
Lett. 2001, 42, 691. (c) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima,
Y.; Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc.
(13) For our related reports on hydrocyanation of aldehydes catalyzed
by Ti-salen complex, see: (a) Pan, W. D.; Feng, X. M.; Gong, L. Z.; Hu,
W. H.; Li, Z.; Mi, A. Q.; Jiang, Y. Z. Synlett. 1996, 337. (b) Jiang, Y. Z.;
Gong, L. Z.; Feng, X. M.; Hu, W. H.; Pan, W. D.; Li, Z.; Mi, A. Q.
Tetrahedron 1997, 53, 14327. (c) Feng, X. M.; Gong, L. Z.; Hu, W. H.;
Li, Z.; Pan, W. D.; Mi, A. Q.; Jiang, Y. Z. Chem. J. Chin. UniV. 1998, 19,
1416 (in Chinese).
2
001, 123, 9908. (d) Yabu, K.; Masumoto, S.; Kanai, M.; Curran, D. P.;
Shibasaki, M. Tetrahedron Lett. 2002, 43, 2923. (e) Masumoto, S.; Suzuki,
M.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 8647.
(
11) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.
(12) Deng, H.; Snapper, M. P.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2
002, 41, 1009.
950
Org. Lett., Vol. 5, No. 6, 2003