8
Tetrahedron
ACCEPTED MANUSCRIPT
1H-NMR (400 MHz, CDCl3): δ = 9.63 (s, 1H); 5.08 (d, 1H,
Am. Chem. Soc. 2003, 125, 13022−13023.
Synthesis of Colombiasin A: (c) A: Nicolaou, K.
C.; Vassilikogiannakis, G.; Magerlein, W.;
Kranich, R. Angew. Chem., Int. Ed. 2001, 40,
2482-2486. (d) Nicolaou, K. C.;
Vassilikogiannakis, G.; Magerlein, W.; Kranich, R.
Chem. Eur. J. 2001, 7, 5359-5371. (e) Kim, A. I.;
Rychnovsky, S. D. Angew. Chem., Int. Ed. 2003,
42, 1267-1270. (f) Harrowven, D. C.; Pascoe, D.
D.; Demurtas, D.; Bourne, H. O. Total Synthesis of
(-)-Colombiasin A and (-)-Elisapterosin B,: (g)
Angew. Chem., Int. Ed. 2005, 44, 1221-1222. (h)
Boezio, A. A.; Jarvo, E. R.; Lawrence, B. M.;
Jacobsen, E. N., Angew. Chem., Int. Ed. 2005, 44,
6046-6050.
J = 5.51 Hz); 4.99 (d, 1H, J = 5.51 Hz); 4.87 (d, 1H, J = 5.82
Hz); 4.82 (d, 1H, J = 5.81 Hz) 3.78 (brd, 1H, J= 6.2 Hz); 3. 70 (s,
3H); 3.51 (s, 3H); 3.46 (s, 3H); 3.17 (m, 1H); 3.58 (s, 3H); 3.52
(s, 3H); 3.31-3.22 (m, 1H); 2.14 (m, 1H); 2.11 (s, 3H); 1.89 (m,
1H); 1.60-150 (m, 2H); 1.18 (d, 3H, J = 7.00 Hz).
13C-NMR (100 MHz, CDCl3): δ = 203.1 (d); 151.3 (s); 150.6
(s); 145.4 (s); 135.5 (s); 122.9 (s); 121.3 (s); 99.5 (t); 99.2 (t);
60.0 (q); 57.4 (q); 57.3 (q); 46.5 (d); 27.2 (t); 26.6 (d); 21.3 (q);
17.9 (t); 10.2 (q).
[α]20D = +47.2 (c 1.0, CH2Cl2)
6. a) Heckrodt, T.J.; Mulzer, J. J. Am. Chem. Soc.
2003,125, 4680-4681.b) Preindl, J.; Leitner, C.;
Baldauf, S.; Mulzer, J. Org. Lett. 2014, 16, 4276–
4279.
7. Waizumi, N.; Stankovic, A.R.; Rawal, V.H. J.
Am. Chem. Soc. 2003, 125, 13022-13023.
8. Zanoni, G.; Franzini, M. Angew. Chem. Int. Ed.
2004, 43, 4837–4841.
9. (a) Jackson, S. R.; Johnson, M. G.; Mikami, M.;
Shiokawa, S.; Carreira, E. M. Angew. Chem., Int.
Ed. 2001, 40, 2694. (b) Ritter, T.; Zarotti, P.;
Carreira, E. M. Org. Lett. 2004, 6, 4372-43743 and
citations therein.
10. a) Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno, Y.;
Kanematsu, M.; Hamada, Y. Org. Lett. 2010, 12,
5020-5023. b) Rousseaux, S.; Fortanet, J.;
Sanchez, M.; Buchwald, S. L. J. Am. Chem. Soc.
2011, 133, 9282-9285
(1R,4S)-6-Methoxy-5,8-bis(methoxymethoxy)-4,7-dimethyl-
1,2,3,4-tetrahydronaphthalene-1-carbaldehyde (39).
A
round bottomed flask was charged with in of
dichloromethane (4 mL). Three drops of pyridine were added
causing the periodinane to fully dissolve. Then alcohol was
transferred into the mixture with three portions of
dichloromethane (0.5 mL each) and the resulting yellowish
solution was stirred for 10 minutes. After TLC confirmed
completion the mixture was filtered over silica with a mixture of
petroleum ether and ethyl acetate (4:1). Removal of the solvent in
vacuo yielded 39 (180.5 mg, 81%).
11. For the synthesis of similar bicyclic compounds
see: a) O'Hora, P. S.; Incerti-Pradillos, C. A.,
Kabeshov, M. A.; Shipilovskikh, S. A.; Rubtsov,
A. E., Elsegood, M. R. J.; Malkov, A. V.. Chem.
Eur. J., 2015, 21: 4551–4555. b) Ying, W.; Barnes,
C. L.; Harmata, M.; Tetrahedron Lett. 2011, 52,
177–180. c) Kotha, S.; Mandal, K.; Tetrahedron
Lett. 2004, 52, 2585–2588.
12. Wu, Q.;W.; Liu, Zhuo, C.; Rong, Z.; Ye, K.; You.
S. Angew. Chem. Int. Ed. 2011, 50, 4455-4458.
13. Chen, J.; Chen, X.; Willot, M.; Zhu, J. Angew.
Chem. Int. Ed. 2006, 45, 8028–8032.
14. It should be noted that in our hands the synthesis
of 12 always gave a mixture of TBS and TBEMS
(tButylethylmethylsilyl) protected phenol. For
simplicity only TBS protected phenol is depicted.
15. Takano, S.; Sekiguchi, Y.; Sato, N.; Ogasawara, K.
Synthesis 1987, 139–141.
1H-NMR (400 MHz, CDCl3): δ = 9.43 (d, 1H, J = 4.20 Hz);
5.06 (d, 1H, J = 5.72 Hz); 4.99 (d, 1H, J = 5.72 Hz); 4.74 (d, 1H,
J = 6.02 Hz); 4.72 (d, 1H, J = 6.00 Hz); 3.78 (s, 3H); 3.62-3.55
(m, 1H); 3.58 (s, 3H); 3.52 (s, 3H); 3.31-3.22 (m, 1H); 2.17 (s,
3H); 1.87-1.71 (m, 4H); 1.26 (d, 3H, J = 7.00 Hz).
13C-NMR (100 MHz, CDCl3): δ = 201.8 (d); 151.4 (s); 150.8
(s); 145.6 (s); 135.5 (s); 123.2 (s); 121.9 (s); 99.4 (t); 99.3 (t);
60.1 (q); 58.0 (q); 57.6 (q); 48.7 (d); 28.3 (t); 27.5 (d); 21.3 (q);
19.1 (t); 10.4 (q).
[α]20D = -37.6 (c 0.91, CH2Cl2)
Acknowledgments
16. Kanematsu, M.; Soga, K.; Manabe, Y.; Morimoto,
S.; Yoshida, M.; Shishido, K. Tetrahedron 2011,
67, 4758–4766.
17. Donohoe, T. J.; O’Riordan, T. J. C.; Peifer, M.;
Jones, C. R.; Miles, T. J. Org. Lett. 2012, 14,
5460–5463.
This work is financially supported by the Austrian Science
Fund (FWF) (Project No P 25556-N28). We wish to thank
Ass.Prof. Dipl.-Ing. Dr.techn. Christian Hametner (Vienna
University of Technology) for performing the 2D NMR
measurements.
18. Trost, B. M.; Toste, F. D. J. Am. Chem.Soc. 1998,
120, 815-816.
19. Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J.
M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9,
1589–1592.
20. Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.;
Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126,
10210–10211.
21. Compounds 36 and 38 were used to determinate
the enantiopurity of our products. Accordingly,
both alcohols were transformed to the
References and notes
1. Rodríguez, A. D.; González, C.; Huang, S. D. J.
Org. Chem. 1998, 63, 7083–7091.
2. Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.;
Barnes, C. L. J. Org. Chem. 2000, 65, 1390-1398.
3. Rodriguez, A. D.; Ramirez, Org. Lett. 2000, 2,
507-510.
corresponding Mosher’s esters and based on HPLC
and 19F NMR analysis, the enantiomeric excess
was proven to be 96%.
4. Review on the synthesis of Colombiasin A and
Elisapterosin B:
5. (a) Lynch, J. K.; Park, C.-M. Chemtracts 2005,
18(4),236−245. Synthesis of Elisapterosin B :(b)
Waizumi, N.; Stankovic, A. R.; Rawal, V. H. J.