10.1002/chem.202005203
Chemistry - A European Journal
COMMUNICATION
[4]
[5]
W. Denk, H. Hortsmann, PLoS Biol. 2004, 2, e329.
structures such as V appear very bright and III being black
meaning no accumulation of contrast agent. The CT results are
very well reflected in the histological slide where the structures V
appears very pink indicating a high concentration of the contrast
agent 9c, while II and III being white highlighting the absence of
contrast agent. Thus the staining results and image quality
compare very well with the respective results obtained with the
eosin Y disodium salt (2a).[5a] A clear advantage is seen here in
the enormous reduction of the contrast agent used to stain the
biopsy samples from 300 mg/mL for 2a to 25 mg/mL for 9c. Even
though the color of the dibromo fluorescein barium salt (9c)
shifted to orange-pink when compared to the eosin Y disodium
salt (2a), the pathologists observed no problems to perform their
histological analysis. Thus, the new X-ray stain dibromo
fluorescein barium salt (9c) proved superior and is thus suitable
for µCT even at low concentrations.
To conclude, the improved solubility of 9c in water was crucial to
obtain this new X-ray staining agent that allows to
non-destructively and selectively visualize the cell cytoplasm of
biological and medical soft-tissue samples in three dimensions.
The application of the staining protocol to turkey liver and mouse
kidney tissue pieces underlines the reliability of the protocol and
emphasizes the use for different tissue types. The ability to
counterstain the biopsy samples using standard histological
methods paves the way for establishing a convenient 3D X-ray
histology approach as a complementary tool for future histological
analysis. This will offer access to additional information and
support histologists where 2D imaging is facing its boundaries and
thus meeting the demands to provide answers to advanced
medical questions, which will benefit from targeted staining of
specific biological structures as well as non-destructive 3D
imaging techniques.
a) M. Busse, M. Müller, M. A. Kimm, S. Ferstl, S. Allner, K. Achterhold,
J. Herzen, F. Pfeiffer, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 2293-
2298; b) N. S. Jeffrey, R. S. Stephenson, J. A. Gallagher, P. Cox, J.
Biomech. 2011, 44, 189-192; c) B. D. Metscher, Dev. Dyn. 2009, 238,
632-640; d) B. D. Metscher, BMC Physiol. 2009, 9, 11; e) R. Mizutani, Y.
Suzuki, Micron 2012, 43, 104-115; f) M. Senter-Zapata, K. Patel, P. A.
Bautista, M. Griffin, J. Michaelson, Y. Yagi, Pathobiology 2016, 83, 140-
147; g) T. Shearer, R. S. Bradley, L. A. Hidalgo-Bastida, M. J. Sherratt,
S. H. Cartmell, J. Cell Sci. 2016, 129, 2483-2492; h) M. Virta, I. Hannula,
K. Tamminen, K. Lindfors, A. Kaukinen, J. Popp, P. Taavela, P.
Saavalainen, J. Hiltunen, J. Hyttinen, K. Kurppa, Sci. Rep. 2016, 10,
13164.
[6]
a) G. Kerckhofs, J. Sainz, M. Maréchal, M. Wevers, T. Van de Putte, L.
S. Geris, J. Chrooten, Cartilage 2014, 5, 55-65; b) M. Müller, I. d. S.
Oliveira, S. Allner, S. Ferstl, P. Bidola, K. Mechlem, A. Fehringer, L. Hehn,
M. Dierolf, K. Achterhold, B. Gleich, J. U. Hammel, H. Jahn, G. Mayer, F.
Pfeiffer, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12378-12383; c) L. A.
Walton, R.S. Radley, P. J. Withers, V. L. Ewton, R. E. Watson, C. Austin,
M. J. Sherratt, Sci. Rep. 2015, 5, 10074; d) S. Ferstl, M. Busse, M. Müller,
M. A. Kimm, E. Drecoll, T. Bürkner, S. Allner, M. Dierolf, D. Pfeiffer, E. J.
Rummeny, W. Weichert, F. Pfeiffer, IEEE Trans. Med. Imaging 2019, 39,
1494-1500; e) M. Müller, M. A. Kimm, S. Ferstl, S. Allner, K. Achterhold,
J. Herzen, F. Pfeiffer, M. Busse, Sci. Rep. 2018, 8, 17855.
[7]
[8]
[9]
a) W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood,
Nature 2005, 435, 1210-1213; b) R. Falcone, C. Jacobsen, J. Kirz, S.
Marchesini, D. Shapiro, J. Spence, Contemporary Physics 2011, 52,
293-318; c) J. C. Kirz, J. Phys. Conf. Ser. 2009, 186, 012001.
a)
b)
J. Martins de Souza e Silva, I. Zanette, P. B. Noel, M. B. Cardoso, M. A.
Kimm, F. Pfeiffer, Sci. Rep. 2015, 5, 14088.
[10] An overview on the use of eosin dyes in organic synthesis can be found
in a) D. P. Hari, B. König, Chem. Comm. 2014, 50, 6688-6699; b) N. A.
Romero, D. A. Nicewicz, Chemical 2016, 116, 10075-10166; c) V.
Srivastava, P. P. Singh, RSC Advences 2017, 7, 31377-31392.
[11] An overview on eosin dyes used for protein staining can be found in a)
H. Y. Hong, G. S. Yoo, J. K. Choi, Anal. Lett. 1999, 32, 2427-2442; b) M.
E. Selsted, H. W. Becker, Anal. Biochem. 1986, 155, 270-274.
[12] P. Russo in Handbook of X-ray Imaging: Physics and Technology
(Medical Physics and Biomedical Engineering), Tylor & Francis Inc.,
2018.
Acknowledgements
This work was funded by the Emmy-Noether (DFG, GU 1134-3)
and Heisenberg (DFG, GU 1134-4) program of the German
Research Foundation (DFG) to T.G. M.B. thanks the European
Union Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie Grant Agreement No. H2020-MSCA-IF-
2015-703745-CONSALT.
[9]
For the synthesis and characterization of the Pb(II) eosin y salt (2e) see
C. Anselmi, D. Capitani, A. Tintaru, B. Doherty, A. Sgamellotti, C. Miliani,
Dyes Pigm. 2017, 140, 297-311.
Keywords: microCT • eosin y • fluorescein • stain
[1]
[2]
a) A. Andreasen, A. Drewes, J. Neurosci. Methods 1992, 45, 199-207; b)
M. S. Braverman, I. M. Braverman, J. Invest. Dermatol. 1986, 86, 290-
294; c) E. P. Meyer, V. J. Domanico, J. Neurosci. Methods 1988, 26, 129-
132; d) J. Streicher, J. W. Weninger, G. B. Müller, Anat. Rec. 1997, 248,
583-602.
a) P. Davidovits, M. D. Egger, Nature 1969, 223, 831; b) B. Matsumoto
in Cell biological applications of confocal microscopy, Vol. 70, Academic
Press, 2002; c) H. Morales-Navarrete, F. Segovia-Miranda, P. Klukowski,
K. Meyer, H. Nonaka, G. Marsico, M. Chernykh, A. Kalaidzidis, M. Zerial,
Y. Kalaidzidis, eLife 2015, 4, e11214; d) J. K. Stevens, R. M. Linda, E. T.
Judy in Three-dimensional confocal microscopy: volume investigation of
biological specimens, Vol. 1, Academic Press, 1994; e) J. C. Stockert, A.
Blazquez-Castro in Fluorescence Microscopy in Life Sciences, Bentham
Science Publishers, 2017; f) M. Girkin, M. T. Carvalho, J. Opt. 2018, 20,
053002.
[3]
a) J. V. M. Rosenthal, D. Walker, M. Bennett, T. J. Mohun, Birth Defects
Res. C 2004, 72, 213-223; b) J. W. Weninger, S. Meng, J. Streicher, G.
B. Müller, Anat. Embryol. 1998, 197, 341-348.
5
This article is protected by copyright. All rights reserved.