1858
B. Witulski, A. Zimmermann
LETTER
(3) (a) Tang, W.; Eisenbrand, G. Chinese Drugs of Plant Origin,
Chemistry, Pharmacology, and Use in Traditional and
Modern Medicine; Springer-Verlag: Berlin, Heidelberg,
1992. (b) Barton, D. H. R.; de Vries, J. X. J. Chem. Soc.
1963, 1916. (c) Bjeldanes, L. F.; Kim, I.-S. J. Org. Chem.
1977, 42, 2333. (d) Bartschat, D.; Beck, T.; Mosandl, A. J.
Agric. Food. Chem. 1997, 45, 4554.
(9) Sato, Y.; Ohashi, K.; Mori, M. Tetrahedron Lett. 1999, 40,
5231.
(10) Bhatarah, P.; Smith, E. H. J. Chem. Soc., Perkin Trans. 1
1992, 2163.
(11) Müller, E. Synthesis 1974, 761.
(12) (a) Grigg, R.; Scott, R.; Stevenson, P. Tetrahedron Lett.
1982, 23, 2691. (b) Grigg, R.; Scott, R.; Stevenson, P. J.
Chem. Soc., Perkin Trans. 1 1988, 1357. (c) Grigg, R.;
Sridharan, V.; Wang, J.; Xu, J. Tetrahedron 2000, 56, 8967.
(13) (a) Magnus, P.; Witty, D.; Stamford, A. Tetrahedron Lett.
1993, 34, 23. (b) McDonald, F. E.; Zhu, H. Y. H.;
Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605.
(c) Witulski, B.; Stengel, T. Angew. Chem. Int. Ed. 1999, 38,
2426. (d) Witulski, B.; Stengel, T.; Fernández-Hernández, J.
M. Chem. Commun. 2000, 1965. (e) Kotha, S.; Mohanraja,
K. Chem. Commun. 2000, 1909. (f) McDonald, F. E.;
Smolentsev, V. Org. Lett. 2002, 4, 745. (g) Witulski, B.;
Alayrac, C. Angew. Chem. Int. Ed. 2002, 41, 3281.
(14) (a) Propargylic alcohol (S)-2h (94% ee) is commercially
available. The product, (S)-2g was obtained with 88% ee
after (S)-alpine borane reduction of the corresponding
ketone as described in the literature: Overman, L. E.; Bell, K.
L. J. Am. Chem. Soc. 1981, 103, 1851. (b) For the synthesis
of (+)-propargylic alcohols via addition of lithium acetylide
to aldehydes, see: Midland, M. M. J. Org. Chem. 1975, 40,
2250.
(4) (a) Ke, Y.; Ye, K.; Grossniklaus, H. E.; Archer, D. R.; Joshi,
H. C.; Kapp, J. A. Cancer Immunol. Immunother. 2000, 49,
217. (b) Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J. A.;
Tekmal, R. R.; Petros, J.; Joshi, H. C. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 1601. (c) Mehta, A. K.; Ticku, M. K. Brain
Res. Rev. 1999, 29, 196. (d) Kardos, J.; Blandl, T.; Luyen,
N. D.; Doernyei, G.; Gács-Baitz, E.; Simonyi, M.; Cash, D.
J.; Blaskó, G.; Szántay, C. Eur. J. Med. Chem. 1996, 31,
761. (e) Prager, R. H.; Tippett, J. M.; Ward, A. D. Aust. J.
Chem. 1981, 34, 1085. (f) Hung, T. V.; Mooney, B. A.;
Prager, R. H.; Tippett, J. M. Aust. J. Chem. 1981, 34, 383.
(5) (a) Sartori, G.; Bigi, F.; Tao, X.; Porta, C.; Maggi, R.;
Predieri, G.; Lanfranchi, M.; Pellinghelli, M. A. J. Org.
Chem. 1995, 60, 6588. (b) Taunton, J.; Wood, J. L.;
Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10378.
(c) Katsuura, K.; Snieckus, V. Can. J. Chem. 1987, 65, 124.
(d) Katsuura, K.; Snieckus, V. Tetrahedron Lett. 1985, 26,
9. (e) Uemura, M.; Take, K.; Isobe, K.; Minami, T.; Hayashi,
Y. Tetrahedron 1985, 41, 5771. (f) Uemura, M.; Take, K.;
Hayashi, Y. J. Chem. Soc., Chem. Commun. 1983, 858.
(g) Broadhurst, M. J.; Hassall, C. H. J. Chem. Soc., Perkin
Trans. 1 1982, 2227. (h) Snieckus, V. Heterocycles 1980,
14, 1649. (i) Kim, K. S.; Spatz, M. W.; Johnson, F.
Tetrahedron Lett. 1979, 20, 331.
(15) For recent achievements in the synthesis of optical active
propargylic alcohols, see: (a) Franz, D. E.; Tomooka, C. S.;
Fässler, R.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373.
(b) Schubert, T.; Hummel, W.; Müller, M. Angew. Chem.
Int. Ed. 2002, 41, 634.
(6) Aryllithium reagents: (a) Takahashi, H.; Tsubuki, T.;
Higashiyama, K. Chem. Pharm. Bull. 1991, 39, 3136.
(b) Alexakis, A.; Sedrani, R.; Normant, J. F.; Mangeney, P.
Tetrahedron: Asymmetry 1990, 1, 283. (c) Ogawa, Y.;
Hosaka, K.; Chin, M.; Mitsuhashi, H. Heterocycles 1989,
29, 865. (d) Meyers, A. I.; Hanagan, M. A.; Trefonas, L. M.;
Baker, R. J. Tetrahedron 1983, 39, 1991. (e) Asami, M.;
Mukaiyama, T. Chem. Lett. 1980, 17. (f) Dialkyl- and
arylzinc reagents: Ogawa, Y.; Saiga, A.; Mori, M.; Shibata,
T.; Takagi, K. J. Org. Chem. 2000, 65, 1031. (g) See also:
Nakano, H.; Kumagai, N.; Matsuzaki, H.; Kabuto, C.;
Hongo, H. Tetrahedron: Asymmetry 1997, 8, 1391. (h) See
further: Soai, K.; Hori, H.; Kawahara, M. Tetrahedron:
Asymmetry 1991, 2, 253. (i) See also: Watanabe, M.;
Hashimoto, N.; Araki, S.; Butsugan, Y. J. Org. Chem. 1992,
57, 742. (j) Organotitanium reagents: Takahashi, H.;
Tsubuki, T.; Higashiyama, K. Synthesis 1992, 681. (k)
Another example: Olivero, A. G.; Weidmann, B.; Seebach,
D. Helv. Chim. Acta 1981, 64, 2485. (l) Borane reagents:
Ramachandran, P. V.; Chen, G.-M.; Brown, H. C.
(16) (a) Birtwistle, D. H.; Brown, J. M.; Foxton, M. W.
Tetrahedron 1988, 44, 7309. (b) Maier, S.; Kazmaier, U.
Eur. J. Org. Chem. 2000, 1241.
(17) Selected data for diyne esters 3:
3a: Mp: 101–103 °C. 1H NMR (400 MHz, CDCl3):
= 7.99–7.94 (m, 1 H), 7.79–7.74 (m, 3 H), 7.64–7.59 (m, 1
H), 7.40–7.20 (m, 4 H), 5.06 (s, 2 H), 2.97 (s, 1 H), 2.33 (s,
3 H). 13C NMR (100 MHz, CDCl3): = 151.9, 145.4, 134.7,
134.0, 130.5, 130.0, 129.9, 126.9, 125.5, 123.8, 120.4,
113.5, 103.7, 85.9, 78.9, 75.9, 73.9, 54.4, 21.5. MS (EI):
m/z (%) = 377 (100) [M+]. Anal. Calcd for C21H15NO4S: C,
66.83; H, 4.01; N, 3.71. Found: C, 66.99; H, 3.99; N, 3.60.
(S)-3g: 1H NMR (400 MHz, CDCl3): = 5.40 (dt, J = 6.7
Hz, J = 2.2 Hz, 1 H), 2.93 (s, 1 H), 2.52 (d, J = 2.2 Hz, 1 H),
1.87–1.81 (m, 2 H), 1.49–1.26 (m, 4 H), 0.93 (t, J = 7.2 Hz,
3 H). 13C NMR (100 MHz, CDCl3) = 151.6, 80.0, 75.4,
74.6, 74.3, 65.9, 34.1, 26.9, 22.1, 13.8. MS (EI): m/z (%) =
164 (8) [M+].
(S)-3i: Mp: 59–61 °C. 1H NMR (400 MHz, CDCl3):
= 7.61–7.58 (m, 2 H), 7.48–7.43 (m, 1 H), 7.40–7. 35 (m,
2 H), 5.56 (dq, J = 6.6, J = 2.2 Hz, 1 H), 2.53 (d, J = 2.2 Hz,
1 H), 1.60 (d, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3):
= 152.8, 133.0, 130.8, 128.6, 119.4, 87.1, 81.2, 80.2, 73.8,
61.7, 21.1. MS (EI): m/z (%) = 198(7) [M+]. Anal. Calcd for
C13H10O2: C, 78.77; H, 5.09. Found: C, 78.82; H, 4.98.
(18) For reviews on the Mitsunobu reaction, see: (a) Dodge, J.
A.; Nissen, J. S.; Presnell, M. Org. Synth. 1996, 73, 110.
(b) Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127.
(c) Hughes, D. L. Org. React. 1992, 42, 335. (d) Castro, B.
R. Org. React. 1983, 29, 1. (e) Mitsunobu, O. Synthesis
1981, 1.
Tetrahedron Lett. 1996, 37, 2205.
(7) BINAP-Ru(II) hydrogenation: (a) Kitamura, M.; Ohkuma,
T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.;
Ohta, T.; Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988,
110, 629. (b) Ohkuma, T.; Kitamura, M.; Noyori, R.
Tetrahedron Lett. 1990, 31, 5509. (c) Transfer
hydrogenation: Everaere, K.; Scheffler, J.-L.; Mortreux, A.;
Carpentier, J.-F. Tetrahedron Lett. 2001, 42, 1899. (d) Ni-
catalyzed cross couplings: Lei, J.-G.; Hong, R.; Yuan, S.-G.;
Lin, G.-Q. Synlett 2002, 927. (e) Bioreduction: Kitayama,
T. Tetrahedron: Asymmetry 1997, 8, 253.
(8) (a) Padwa, A.; Weingarten, M. D. J. Org. Chem. 2000, 65,
3722. (b) Harland, P. A.; Hodge, P. Synthesis 1982, 223.
(c) Becher, J.; Nielsen, H. C.; Jacobsen, J. P.; Simonsen, O.;
Clausen, H. J. Org. Chem. 1988, 53, 1862.
(19) The enantiopurity of the esters 3g–i was analyzed after their
conversion to the phthalides 4f–h, that proceeded without
any detectable racemisation.
(20) Selected data for phthalides 4:
(S)-4f: Oil; [ ]D22 = –42 (c 0.45, CHCl3); 88% ee as
Synlett 2002, No. 11, 1855–1859 ISSN 0936-5214 © Thieme Stuttgart · New York