October 2010
1407
(979.9 mg), 5-5 (1.19 g), 5-6 (1.27 g), and 5-7 (130.1 mg)], as was described
previously.5) The fraction 5-1 (870.2 mg) was further purified by HPLC
[Cosmosil pNAP, CH3CN–1% aqueous AcOH (5 : 95, v/v)] to give 10 (55.3
mg, 0.0025%) and 8-epiloganic acid (11, 51.5 mg, 0.0023%).
jiang Staple Medicinal Plants,” ed. by Xinjiang Institute of Traditional
Chinese and Ethnologic Medicines, 2004, pp. 84—88.
3) Xie H., Morikawa T., Matsuda H., Nakamura S., Muraoka O.,
Yoshikawa M., Chem. Pharm. Bull., 54, 669—675 (2006).
4) Yoshikawa M., Matsuda H., Morikawa T., Xie H., Nakamura S., Mu-
raoka O., Bioorg. Med. Chem., 14, 7468—7475 (2006).
5) Morikawa T., Pan Y., Ninomiya K., Imura K., Matsuda H., Yoshikawa
M., Yuan D., Muraoka O., Bioorg. Med. Chem., 18, 1882—1890 (2010).
6) Pan Y., Morikawa T., Ninomiya K., Imura K., Yuan D., Yoshikawa M.,
Muraoka M., Chem. Pharm. Bull., 58, 575—578 (2010).
7) Kobayashi H., Karasawa H., Miyase T., Fukushima S., Chem. Pharm.
Bull., 33, 3645—3650 (1985).
8) Yoshizawa F., Deyama T., Takizawa N., Usmanghani K., Ahmad M.,
Chem. Pharm. Bull., 38, 1927—1930 (1990).
9) Wang S. J., Pei Y. H., Hua H. M., Chin. Chem. Lett., 12, 343—344
(2001).
10) Sekiwa Y., Mizuno Y., Yamamoto Y., Kubota K., Kobayashi A.,
Koshino H., Biosci. Biotechnol. Biochem., 63, 384—389 (1999).
11) Kasai R., Fujino H., Kuzuki T., Wong W.-H., Goto C., Yata N., Tanaka
O., Yasuhara F., Yamaguchi S., Phytochemistry, 25, 871—876 (1986).
12) Morikawa H., Kasai R., Otsuka H., Hirata E., Shinzato T., Aramoto
M., Takeda Y., Chem. Pharm. Bull., 52, 1086—1090 (2004).
13) Sugiyama M., Nagayama E., Kikuchi M., Phytochemistry, 33, 1215—
1219 (1993).
Kankanoside L (1): A white powder, [a]D26 Ϫ45.7 (cϭ0.48, MeOH).
High-resolution positive-ion FAB-MS: Calcd for C15H24O9Na [MϩNa]ϩ
371.1318; Found 371.1309. IR (KBr, cmϪ1): 3433, 2928, 1080. 1H-NMR
(600 MHz, CD3OD) d: given in Table 1. 13C-NMR (150 MHz, CD3OD) dC:
given in Table 2. Positive-ion FAB-MS m/z: 371 [MϩNa]ϩ. Negative-ion
FAB-MS m/z: 347 [MϪH]Ϫ.
Kankanoside M (2): A white powder, [a]D26 Ϫ18.7 (cϭ0.11, MeOH).
High-resolution positive-ion FAB-MS: Calcd for C15H22O8Na [MϩNa]ϩ
353.1212; Found 353.1208. IR (KBr, cmϪ1): 3433, 2924, 1736, 1655, 1076.
1H-NMR (600 MHz, CD3OD) d: given in Table 1. 13C-NMR (150 MHz,
CD3OD) dC: given in Table 2. Positive-ion FAB-MS m/z: 353 [MϩNa]ϩ.
Kankanoside N (3): A white powder, [a]D25 Ϫ24.6 (cϭ1.00, MeOH).
High-resolution positive-ion FAB-MS: Calcd for C16H28O8Na [MϩNa]ϩ
1
371.1682; Found 371.1686. IR (KBr, cmϪ1): 3415, 2874, 1076, 1028. H-
NMR (600 MHz, CD3OD) d: given in Table 1. 13C-NMR (150 MHz, CD3OD)
dC: given in Table 2. Positive-ion FAB-MS m/z: 371 [MϩNa]ϩ.
Kankanoside O (4): A white powder, [a]D23 Ϫ26.1 (cϭ2.30, MeOH).
High-resolution positive-ion FAB-MS: Calcd for C16H26O8Na [MϩNa]ϩ
369.1525; Found 369.1528. UV [lmax (log e), MeOH, nm]: 217 (4.04). IR
14) Ida Y., Satoh Y., Ohtsuka M., Nagasao M., Shoji J., Phytochemistry,
35, 209—215 (1994).
15) Chiba M., Hisada S., Nishibe S., Thieme H., Phytochemistry, 19,
335—336 (1980).
1
(KBr, cmϪ1): 3433, 2926, 1696, 1647, 1076. H-NMR (600 MHz, CD3OD)
d: given in Table 3. 13C-NMR (150 MHz, CD3OD) dC: given in Table 2. Pos-
itive-ion FAB-MS m/z: 369 [MϩNa]ϩ.
Kankanoside P (5): A white powder, [a]D21 Ϫ32.7 (cϭ0.18, MeOH).
High-resolution positive-ion FAB-MS: Calcd for C16H26O8Na [MϩNa]ϩ
369.1525; Found 369.1520. UV [lmax (log e), MeOH, nm]: 217 (4.08). IR
16) Deyama T., Ikawa T., Nishibe S., Chem. Pharm. Bull., 33, 3651—3657
(1985).
17) Sugiyama M., Kikuchi M., Chem. Pharm. Bull., 39, 483—485 (1991).
18) Kobayashi H., Karasawa H., Miyase T., Fukushima S., Chem. Pharm.
Bull., 33, 1452—1457 (1985).
1
(KBr, cmϪ1): 3434, 2926, 1701, 1647, 1076. H-NMR (600 MHz, CD3OD)
d: given in Table 3. 13C-NMR (150 MHz, CD3OD) dC: given in Table 2. Pos-
1
19) The H- and 13C-NMR spectra of 1—5 were assigned with the aid of
itive-ion FAB-MS m/z: 369 [MϩNa]ϩ.
distortionless enhancement by polarization transfer (DEPT), double
quantum filter correlation spectroscopy (DQF COSY), heteronuclear
multiple quantum coherence (HMQC), and heteronuclear multiple
bond connectivity (HMBC) experiments.
Acid Hydrolysis of Kankanosides L—P (1—5) Solutions of 1—5
(each 1.0 mg) in 1.0 M HCl (1.0 ml) were heated at 80 °C for 3 h. After being
cooled, the reaction mixture was neutralized with Amberlite IRA-400 (OHϪ
form), and the resins were removed by filtration. After removal of the sol-
vent under reduced pressure, the residue was separated by Sep-Pak C18 car-
tridge column (H2O→MeOH). The H2O-eluted fraction was subjected to
HPLC analysis under following conditions: HPLC column, Kaseisorb LC
NH2-60-5, 4.6 mm i.d.ϫ250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); de-
tection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo,
Japan); mobile phase, CH3CN–H2O (85 : 15, v/v); flow rate 0.8 ml/min].
Identification of D-glucose present in the H2O-eluted fractions of 1—5 were
carried out by comparison of their retention times and optical rotation with
that of an authentic sample [tR 17.9 min (positive)].
Hydrogenation of 6-Deoxycatalpol (6) A suspension of 6 (12.0 mg)
and 10% palladium carbon (5.0 mg) in MeOH (2.0 ml) was stirred at room
temperature under an H2 atmosphere for 2 h. The catalyst was filtered off,
and the filtrate was condensed under reduced pressure to give 1 (12.0 mg,
quant.).
Enzymatic Hydrolysis of Kankanosides O (4) and P (5) with b-Glu-
cosidase To a solution of 4 (8.0 mg) in H2O (1.5 ml) was added b-glucosi-
dase (4.7 mg, from almond, Oriental Yeast Co., Tokyo, Japan), and the solu-
tion was stirred at 37 °C for 24 h. The reaction was quenched by the addition
of EtOH (5.0 ml), the mixture was condensed under reduced pressure. The
residue was extracted with EtOAc and evaporation of the solvent gave
(2E,6E)-8-hydroxy-2,6-dimethyl-2,6-octadienoic acid20) (4a, 3.9 mg, 92%).
Through a similar procedure, (2E,6E)-8-hydroxy-3,7-dimethyl-2,6-octa-
dienoic acid21) (5a, 0.9 mg, 94%) was obtained from kankanoside P (5, 1.8
mg).
20) Iwagawa T., Asai H., Hase T., Sako S., Su R., Hagiwara N., Kim M.,
Phytochemistry, 29, 1913—1916 (1990).
21) Gering B., Wichtl M., J. Nat. Prod., 50, 1048—1054 (1987).
22) Wang Y., Singh R., Lefkowitch J. H., Rigoli R. M., Czaja M. J., J. Biol.
Chem., 281, 15258—15267 (2006).
23) Tilg H., Day C. P., Nat. Clin. Pract. Gastroenterol. Hepatol., 4, 24—34
(2007).
24) Seronello S., Sheikh M. Y., Choi J., Free Radic. Biol. Med., 43, 869—
882 (2007).
25) Kouroku Y., Fujita E., Jimbo A., Mukasa T., Tsuru T., Momoi M. Y.,
Momoi T., Biochem. Biophys. Res. Commun., 270, 972—977 (2000).
26) Matsuda H., Ninomiya K., Morikawa T., Yasuda D., Yamaguchi I.,
Yoshikawa M., Bioorg. Med. Chem. Lett., 18, 2038—2042 (2008).
27) Matsuda H., Ninomiya K., Morikawa T., Yasuda D., Yamaguchi I.,
Yoshikawa M., Bioorg. Med. Chem., 17, 7313—7323 (2009).
28) Morikawa T., Yamaguchi I., Matsuda H., Yoshikawa M., Chem.
Pharm. Bull., 57, 1292—1295 (2009).
29) Morikawa T., Yakugaku Zasshi, 131, 758—791 (2010).
30) Yoshikawa M., Morikawa T., Funakoshi K., Ochi M., Pongpiriyadacha
Y., Matsuda H., Heterocycles, 75, 1639—1650 (2008).
31) Morikawa T., Funakoshi K., Ninomiya K., Yasuda D., Miyagawa K.,
Matsuda H., Yoshikawa M., Chem. Pharm. Bull., 56, 956—962 (2008).
32) Xie Y., Morikawa T., Ninomiya K., Imura K., Muraoka O., Yuan D.,
Yoshikawa M., Chem. Pharm. Bull., 56, 1628—1631 (2008).
33) Morikawa T., Wang L.-B., Nakamura S., Ninomiya K., Yokoyama E.,
Matsuda H., Muraoka O., Wu L.-J., Yoshikawa M., Chem. Pharm.
Bull., 57, 361—367 (2009).
Bioassay Method Inhibitory effect on TNF-a-induced cytotoxicity in
L929 cells was assayed by the method described in a previous paper.5)
Statistics Values are expressed as meansϮS.E.M. One-way analysis of
34) Wang L.-B., Morikawa T., Nakamura S., Ninomiya K., Matsuda H.,
Muraoka O., Wu L.-J., Yoshikawa M., Heterocycles, 78, 1235—1242
(2009).
variance (ANOVA) followed by Dunnett’s test was used for statistical analy- 35) Morikawa T., Wang L.-B., Ninomiya K., Nakamura S., Matsuda H.,
Muraoka O., Wu L.-J., Yoshikawa M., Chem. Pharm. Bull., 57, 853—
859 (2009).
sis. Probability (p) values less than 0.05 were considered significant.
Acknowledgements This work was supported by ‘High-Tech Research
Center’ Project for Private Universities: matching fund subsidy from MEXT
(Ministry of Education, Culture, Sports, Science and Technology), 2007—
2011 and a Grant-in Aid for Scientific Research from MEXT.
36) Morikawa T., Xie Y., Asao Y., Okamoto M., Yamashita C., Muraoka
O., Matsuda H., Pongpiriyadacha Y., Yuan D., Yoshikawa M., Phyto-
chemistry, 70, 1166—1172 (2009).
37) Asao Y., Morikawa T., Xie Y., Okamoto M., Hamao M., Matsuda H.,
Muraoka O., Yuan D., Yoshikawa M., Chem. Pharm. Bull., 57, 198—
203 (2009).
References and Notes
1) Kobayashi H., Oguchi H., Takizawa N., Miyase T., Ueno A., Usmang- 38) Morikawa T., Xie Y., Ninomiya K., Okamoto M., Muraoka O., Yuan
hani K., Ahmad M., Chem. Pharm. Bull., 35, 3309—3314 (1987).
2) Xinjiang Science and Technology Press, “Culture Techniques of Xin-
D., Yoshikawa M., Hayakawa T., Chem. Pharm. Bull., 58, 1276—1280
(2010).