Organic Letters
Letter
crystallography (CCDC 1916101). Additionally, we found that
the ligand-mediated regiocontrol provided by the [CptRhCl2]2
catalyst could not overcome the electronic bias of styrene, thus
the 3-substituted congener 3z was obtained in this instance.
Styrenes are known to display this inherent regiochemical
preference.10
To conclude our study, we sought to establish that our
optimized procedure could be performed successfully on >1 g of
substrate, a 10-fold increase from our standard conditions, with
the objective of facilitating multistep syntheses (Scheme 5). For
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Present Address
†J.S.B.: Department of Chemistry and Biochemistry, University
of California, Los Angeles, CA 90095.
Notes
a
Scheme 5. Gram-Scale Synthesis
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
J.S.B. gratefully acknowledges the Pfizer Summer Student
Worker Program for an internship. We would like to thank
Dr. Alex Yanovsky (Pfizer), Dr. Milan Gembicky (UCSD), and
Dr. Arnold L. Rheingold (UCSD) for X-ray structure support,
Dr. Wei Wang (Pfizer) and Jason Ewanicki (Pfizer) for NMR
support, and Jeff Elleraas (Pfizer) and Phuong Tran (Pfizer) for
purification support. We further thank Dr. Jennifer Lafontaine
(Pfizer), Dr. Sajiv Nair (Pfizer), and Dr. Patrick Montgomery
(Pfizer) for helpful discussion and review of this manuscript.
a
1
Regioisomeric ratios (rr) were determined by H NMR analysis of
the crude reaction mixtures, and percent yields correspond to isolated
products.
REFERENCES
demonstration of scale, we used 3 mmol of our model substrate
1a following the general procedure which delivered >500 mg of
dihydroisoquinolone 3a in 66% yield and 10:1 regioselectivity.
This result compares favorably with the reactions we performed
on a smaller scale. Moreover, dihydroisoquinolone 3a could be
readily reduced under mild conditions, providing tetrahydroi-
soquinoline 4a in good yield.16
In summary, we have developed a convenient method for
annulation of O-pivaloyl benzhydroxamic acids with propene
gas for the regioselective synthesis of 4-methyl-substituted
dihydroisoquinolones via C−H activation. A diverse set of
functional groups including halides, ketones, nitriles, and
heterocycles was tolerated. Examination of the effects that
influence regioselectivity for olefin insertion and site selectivity
for C−H activation has provided a better understanding for
predicting the fate of novel substrates. We envision that this
methodology will directly impact ongoing medicinal chemistry
programs, aiding rapid analogue synthesis and fragment-based
drug discovery approaches focused on the versatile isoquinoline
motif. Furthermore, we believe these conditions will serve as a
useful platform for adaptation to larger-scale applications later in
the drug development process.
■
(1) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669−1730.
(2) For selected references, see: (a) Welsch, M. E.; Snyder, S. A.;
Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347−361. (b) Palmer,
N.; Peakman, T. M.; Norton, D.; Rees, D. C. Org. Biomol. Chem. 2016,
14, 1599−1610. (c) Murray, C. W.; Rees, D. C. Angew. Chem., Int. Ed.
2016, 55, 488−492. (d) Singh, I. P.; Shah, P. Expert Opin. Ther. Pat.
2017, 27, 17−36.
(3) Clark, R. D.; Miller, A. B.; Berger, J.; Repke, D. B.; Weinhardt, K.
K.; Kowalczyk, B. A.; Eglen, R. M.; Bonhaus, D. W.; Lee, C.-H. J. Med.
Chem. 1993, 36, 2645−2657.
(4) Malaisse, W. J. Drugs R&D 2006, 7, 331−337.
(5) For selected references, see: (a) Kung, P.; Rui, E.; Bergqvist, S.;
Bingham, P.; Braganza, J.; Collins, M.; Cui, M.; Diehl, W.; Dinh, D.;
Fan, C.; Fantin, V. R.; Gukasyan, H. J.; Hu, W.; Huang, B.; Kephart, S.;
Krivacic, C.; Kumpf, R. A.; Li, G.; Maegley, K. A.; McAlpine, I.; Nguyen,
L.; Ninkovic, S.; Ornelas, M.; Ryskin, M.; Scales, S.; Sutton, S.; Tatlock,
J.; Verhelle, D.; Wang, F.; Wells, P.; Wythes, M.; Yamazaki, S.; Yip, B.;
Yu, X.; Zehnder, L.; Zhang, W.; Rollins, R. A.; Edwards, M. J. Med.
Chem. 2016, 59, 8306−8325. (b) Wurtz, N. R.; Parkhurst, B. L.; Jiang,
W.; DeLucca, I.; Zhang, X.; Ladziata, V.; Cheney, D. L.; Bozarth, J. R.;
Rendina, A. R.; Wei, A.; Luettgen, J. M.; Wu, Y.; Wong, P. C.; Seiffert,
D. A.; Wexler, R. R.; Priestley, E. S. ACS Med. Chem. Lett. 2016, 7,
1077−1081. (c) Buchstaller, H.-P. Patent Appl. WO 2017/020981 A1,
̈
February 9, 2017. (d) Georgsson, J.; Bergstrom, F.; Nordqvist, A.;
ASSOCIATED CONTENT
* Supporting Information
Watson, M. J.; Blundell, C. D.; Johansson, M. J.; Petersson, A. U.; Yuan,
Z.-Q.; Zhou, Y.; Kristensson, L.; Kakol-Palm, D.; Tyrchan, C.; Wellner,
E.; Bauer, U.; Brodin, P.; Svensson-Henriksson, A. J. J. Med. Chem.
2014, 57, 5935−5948.
■
S
The Supporting Information is available free of charge on the
(6) For a selected review on the methylation effect in medicinal
chemistry, see: Barreiro, E. J.; Ku
Rev. 2011, 111, 5215−5246.
̈
mmerle, A. E.; Fraga, C. A. M. Chem.
Experimental procedures; characterization data and
copies of NMR spectra for all novel compounds (PDF)
(7) For selected references, see: (a) Leeson, P. D.; Springthorpe, B.
Nat. Rev. Drug Discovery 2007, 6, 881−890. (b) Ryckmans, T.;
Edwards, M. P.; Horne, V. A.; Correia, A. M.; Owen, D. R.; Thompson,
L. R.; Tran, I.; Tutt, M. F.; Young, T. Bioorg. Med. Chem. Lett. 2009, 19,
4406−4409. (c) Edwards, M. P.; Price, D. A. Annu. Rep. Med. Chem.
2010, 45, 381−391. (d) Freeman-Cook, K. D.; Hoffman, R. L.;
Johnson, T. W. Future Med. Chem. 2013, 5, 113−115. (e) Meanwell, N.
A. Chem. Res. Toxicol. 2016, 29, 564−616. (f) Johnson, T. W.; Gallego,
R. A.; Edwards, M. P. J. J. Med. Chem. 2018, 61, 6401−6420.
Accession Codes
CCDC 1916101 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
D
Org. Lett. XXXX, XXX, XXX−XXX