224
B. Wang and others
changes upon substrate binding [27]. From an evolutionary
perspective, variation of the residues forming the H site in
GSTks from different species might confer the varied selectivity
of the enzymes for a wide range of substrates and/or different
enzymatic activities towards the same substrate depending on the
environment to reach a better balance between the detrimental and
beneficial effects of the enzymes. Taken together, it is very likely
that the other GSTks might utilize a similar catalytic mechanism
as that of hGSTk.
14 Singh, N., Sinha, N., Kumar, S., Pandey, C. M. and Agrawal, S. (2011) Glutathione
S-transferase gene polymorphism as a susceptibility factor for acute myocardial infarction
and smoking in the north Indian population. Cardiology 118, 16–21
1
5
Hamed, R. R., Maharem, T. M., Abdel-Meguid, N., Sabry, G. M., Abdalla, A. M. and
Guneidy, R. A. (2011) Purification and biochemical characterization of glutathione
S-transferase from Down syndrome and normal children erythrocytes: a comparative
study. Res. Dev. Disabil. 32, 1470–1482
1
1
1
1
6
7
8
9
Vasieva, O. (2011) The many faces of glutathione transferase pi. Curr. Mol. Med. 11,
1
29–139
Dourado, D. F., Fernandes, P. A., Mannervik, B. and Ramos, M. J. (2008) Glutathione
transferase: new model for glutathione activation. Chemistry 14, 9591–9598
Armstrong, R. N., Rife, C. and Wang, Z. (2001) Structure, mechanism and evolution of
thiol transferases. Chem.-Biol. Interact. 133, 167–169
Caccuri, A. M., Antonini, G., Nicotra, M., Battistoni, A., Lo Bello, M., Board, P. G., Parker,
M. W. and Ricci, G. (1997) Catalytic mechanism and role of hydroxyl residues in the
active site of theta class glutathione S-transferases: investigation of Ser-9 and Tyr-113 in
a glutathione S-transferase from the Australian sheep blowfly, Lucilia cuprina. J. Biol.
Chem. 272, 29681–29686
AUTHOR CONTRIBUTION
Bing Wang carried out the structural and biochemical studies and drafted the paper. Yingjie
Peng and Tianlong Zhang participated in the structural studies. Jianping Ding conceived
the study, participated in the experimental design, and wrote the paper.
2
2
2
0
1
2
Caccuri, A. M., Antonini, G., Board, P. G., Parker, M. W., Nicotra, M., Lo Bello, M.,
Federici, G. and Ricci, G. (1999) Proton release on binding of glutathione to Alpha, Mu
and Delta class glutathione transferases. Biochem. J. 344, 419–425
Kolm, R. H., Sroga, G. E. and Mannervik, B. (1992) Participation of the phenolic hydroxyl
group of Tyr-8 in the catalytic mechanism of human glutathione transferase P1-1.
Biochem. J. 285, 537–540
Allardyce, C. S., McDonagh, P. D., Lian, L. Y., Wolf, C. R. and Roberts, G. C. (1999) The
role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class
glutathione S-transferases. Biochem. J. 343, 525–531
ACKNOWLEDGEMENTS
We thank the staff members at the Shanghai Synchrotron Radiation Facility, Shanghai,
China, for support in diffraction data collection, Professor Bin Xu at Shanghai University
for providing GSDNB, and other members of our group for helpful discussion.
FUNDING
This work was supported by the Ministry of Science and Technology of China [grant
numbers 2011CB911102, 2011CB966301]; the National Natural Science Foundation
of China [grant number 30730028]; the Chinese Academy of Sciences [grant number
SIBS2008002]; and the Science and Technology Commission of Shanghai Municipality
23 Atkinson, H. J. and Babbitt, P. C. (2009) Glutathione transferases are structural and
functional outliers in the thioredoxin fold. Biochemistry 48, 11108–11116
2
2
4
5
Gustafsson, A., Pettersson, P. L., Grehn, L., Jemth, P. and Mannervik, B. (2001) Role of
the glutamyl alpha-carboxylate of the substrate glutathione in the catalytic mechanism of
human glutathione transferase A1-1. Biochemistry 40, 15835–15845
Winayanuwattikun, P. and Ketterman, A. J. (2005) An electron-sharing network involved
in the catalytic mechanism is functionally conserved in different glutathione transferase
classes. J. Biol. Chem. 280, 31776–31782
[grant number 10JC1416500].
REFERENCES
1
2
3
4
5
6
Armstrong, R. N. (1997) Structure, catalytic mechanism, and evolution of the glutathione
transferases. Chem. Res. Toxicol. 10, 2–18
Oakley, A. J. (2005) Glutathione transferases: new functions. Curr. Opin. Struct. Biol. 15,
26 Jowsey, I. R., Thomson, R. E., Orton, T. C., Elcombe, C. R. and Hayes, J. D. (2003)
Biochemical and genetic characterization of a murine class Kappa glutathione
S-transferase. Biochem. J. 373, 559–569
7
16–723
Frova, C. (2006) Glutathione transferases in the genomics era: new insights and
perspectives. Biomol. Eng. 23, 149–169
Hayes, J. D., Flanagan, J. U. and Jowsey, I. R. (2005) Glutathione transferases. Annu. Rev.
Pharmacol. Toxicol. 45, 51–88
Nebert, D. W. and Vasiliou, V. (2004) Analysis of the glutathione S-transferase (GST) gene
family. Hum. Genomics 1, 460–464
Sheehan, D., Meade, G., Foley, V. M. and Dowd, C. A. (2001) Structure, function and
evolution of glutathione transferases: implications for classification of non-mammalian
members of an ancient enzyme superfamily. Biochem. J. 360, 1–16
Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I. and Pearson, W. R. (2005)
Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol. 401,
2
7
Thompson, L. C., Ladner, J. E., Codreanu, S. G., Harp, J., Gilliland, G. L. and Armstrong,
R. N. (2007) 2-Hydroxychromene-2-carboxylic acid isomerase: a kappa class glutathione
transferase from Pseudomonas putida. Biochemistry 46, 6710–6722
Pemble, S. E., Wardle, A. F. and Taylor, J. B. (1996) Glutathione S-transferase class
Kappa: characterization by the cloning of rat mitochondrial GST and identification of a
human homologue. Biochem. J. 319, 749–754
2
8
29 Robinson, A., Huttley, G. A., Booth, H. S. and Board, P. G. (2004) Modelling and
bioinformatics studies of the human Kappa-class glutathione transferase predict a novel
third glutathione transferase family with similarity to prokaryotic
7
2
-hydroxychromene-2-carboxylate isomerases. Biochem. J. 379, 541–552
1
–8
3
3
0
1
Morel, F., Rauch, C., Petit, E., Piton, A., Theret, N., Coles, B. and Guillouzo, A. (2004)
Gene and protein characterization of the human glutathione S-transferase kappa and
evidence for a peroxisomal localization. J. Biol. Chem. 279, 16246–16253
Ladner, J. E., Parsons, J. F., Rife, C. L., Gilliland, G. L. and Armstrong, R. N. (2004)
Parallel evolutionary pathways for glutathione transferases: structure and mechanism of
the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry 43, 352–361
8
9
Allocati, N., Federici, L., Masulli, M. and Di Ilio, C. (2009) Glutathione transferases in
bacteria. FEBS J. 276, 58–75
Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R.,
Sardana, M., Henderson, C. J., Wolf, C. R. et al. (1999) Regulation of JNK signaling by
GSTp. EMBO J. 18, 1321–1334
1
0
Cho, S. G., Lee, Y.H, Park, H. S., Ryoo, K., Kang, K. W., Park, J., Eom, S. J., Kim, M. J.,
Chang, T. S., Choi, S. Y. et al. (2001) Glutathione S-transferase mu modulates the
stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol.
Chem. 276, 12749–12755
32 Liu, M., Zhou, L., Xu, A., Lam, K. S., Wetzel, M. D., Xiang, R., Zhang, J., Xin, X., Dong, L.
Q. and Liu, F. (2008) A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates
adiponectin multimerization. Proc. Natl. Acad. Sci. U.S.A. 105, 18302–18307
1
1
1
2
Johansson, A. S. and Mannervik, B. (2001) Human glutathione transferase A3-3, a highly
efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid
hormones. J. Biol. Chem. 276, 33061–33065
Li, Y. J., Oliveira, S. A., Xu, P., Martin, E. R., Stenger, J. E., Scherzer, C. R., Hauser, M. A.,
Scott, W. K., Small, G. W., Nance, M. A. et al. (2003) Glutathione S-transferase omega-1
modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum. Mol. Genet. 12,
3
3
Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K. and Ito, K.
2006) Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide
bond generation. Cell 127, 789–801
Ito, K. and Inaba, K. (2008) The disulfide bond formation (Dsb) system. Curr. Opin. Struct.
Biol. 18, 450–458
Li, J., Xia, Z. and Ding, J. (2005) Thioredoxin-like domain of human kappa class
glutathione transferase reveals sequence homology and structure similarity to the theta
class enzyme. Protein Sci. 14, 2361–2369
(
3
3
4
5
3
259–3267
1
3
Pedersen, J. Z., De Maria, F., Turella, P., Federici, G., Mattei, M., Fabrini, R., Dawood, K.
F., Massimi, M., Caccuri, A. M. and Ricci, G. (2007) Glutathione transferases sequester
toxic dinitrosyl-iron complexes in cells: a protection mechanism against excess nitric
oxide. J. Biol. Chem. 282, 6364–6371
36 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
oscillation mode. Methods Enzymol. 276, 307–326
ꢀc The Authors Journal compilation ꢀc 2011 Biochemical Society