Article
Biochemistry, Vol. 49, No. 1, 2010 235
both GSH and GSTs. Our data both reinforce and further the
understanding of the targeted activation of brostallicin. Con-
sidering that several human tumors display increased levels of pi
and/or mu class GSTs (12, 13), these data highlight how this
activation relates to the established anticancer activity of bros-
tallicin.
15. Lo Bello, M., Battistoni, A., Mazzetti, A. P., Board, P. G.,
Muramatsu, M., Federici, G., and Ricci, G. (1995) Site-directed muta-
genesis of human glutathione transferase P1-1. Spectral, kinetic, and
structural properties of Cys-47 and Lys-54 mutants. J. Biol. Chem.
270, 1249–1253.
16. Habig, W. H., and Jakoby, W. B. (1981) Assays for differentiation of
glutathione S-transferases. Methods Enzymol. 77, 398–405.
17. Gill, S. C., and von Hippel, P. H. (1989) Calculation of protein
extinction coefficients from amino acid sequence data. Anal. Biochem.
182, 319–326.
REFERENCES
18. Segel, H. I. (1993) Enzyme Kinetic Behavior and Analysis of Rapid
Equilibrium and Stady-State Enzyme System , John Wiley & Sons, Inc.,
New York.
1. Romagnoli, R., Baraldi, P. G., Cruz-Lopez, O., Lopez-Cara, C., and
Preti, D. (2009) R-Halogenoacrylic derivatives of antitumor agents.
Mini Rev. Med. Chem. 9, 81–94.
19. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal,
M., Xu, L., Mendes, P., and Kummer, U. (2006) COPASI: A
COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.
20. Ponti, M., Forrow, S. M., Souhami, R. L., D’Incalci, M., and Hartley,
J. A. (1991) Measurement of the sequence specificity of covalent DNA
modification by antineoplastic agents using Taq DNA polymerase.
Nucleic Acids Res. 19, 2929–2933.
21. Marchini, S., Cozzi, P., Beria, I., Geroni, C., Capolongo, L., D’Incalci,
M., and Broggini, M. (1998) Sequence-specific DNA alkylation of
novel tallimustine derivatives. Anti-Cancer Drug Des. 13, 193–205.
22. Bredereck, H., Gompper, R., and Theilig, G. (1954) Formamide
reactions. III. Reactions of halogen compounds with formamide.
Chem. Ber. 87, 537–546.
23. Guest, H. H. (1947) Isomeric chlorinated long-chain esters. J. Am.
Chem. Soc. 69, 300–302.
24. Nam, J., Lee, S., Kim, K., Yong, P., and Yong, S. (2002) Asymmetric
syntheses of R-mercapto carboxylic acid derivatives by dynamic
resolution of N-methyl pseudoephedrine R-bromo esters. Tetrahedron
Lett. 43, 8253–8255.
25. van Iersel, M. L., Ploemen, J. P., Lo Bello, M., Federici, G., and van
Bladeren, P. J. (1997) Interactions of R,β-unsaturated aldehydes and
ketones with human glutathione S-transferase P1-1. Chem.-Biol.
Interact. 108, 67–78.
26. Caccuri, A. M., Antonini, G., Board, P. G., Parker, M. W., Nicotra,
M., Lo Bello, M., Turella, P., Federici, G., and Ricci, G. (1999) Proton
release on binding of glutathione to alpha, mu and delta class
glutathione transferases. Biochem. J. 344, 419–425.
2. Pook, S. H., Toh, C. K., and Mahendran, R. (2006) Combination of
thiol antioxidant Silibinin with Brostallicin is associated with increase
in the anti-apoptotic protein Bcl-2 and decrease in caspase 3 activity.
Cancer Lett. 238, 146–152.
3. Sabatino, M. A., Colombo, T., Geroni, C., Marchini, S., and Broggini,
M. (2003) Enhancement of in vivo antitumor activity of classical
anticancer agents by combination with the new, glutathione-interact-
ing DNA minor groove-binder, brostallicin. Clin. Cancer Res. 9,
5402–5408.
4. Geroni, C., Marchini, S., Cozzi, P., Galliera, E., Ragg, E., Colombo,
T., Battaglia, R., Howard, M., D’Incalci, M., and Broggini, M. (2002)
Brostallicin, a novel anticancer agent whose activity is enhanced upon
binding to glutathione. Cancer Res. 62, 2332–2336.
5. Cozzi, P. (2001) A new class of cytotoxic DNA minor groove binders:
R-halogenoacrylic derivatives of pyrrolecarbamoyl oligomers. Farm-
aco 56, 57–65.
6. Fedier, A., Fowst, C., Tursi, J., Geroni, C., Haller, U., and Marchini,
S. (2003) Brostallicin (PNU-166196) a new DNA minor groove binder
that retains sensitivity in DNA mismatch repair-deficient tumour
cells. Br. J. Cancer 89, 1559–1565.
7. Guirouilh-Barbat, J., Zhang, Y.-W., and Pommier, Y. (2009)
Induction of glutathione-dependent DNA double-strand breaks
by the novel anticancer drug brostallicin. Mol. Cancer Ther. 8,
1985–1994.
8. Beria, I., Baraldi, P. G., Cozzi, P., Caldarelli, M., Geroni, C.,
Marchini, S., Mongelli, N., and Romagnoli, R. (2004) Cytotoxic R-
halogenoacrylic derivatives of distamycin A and congeners. J. Med.
Chem. 47, 2611–2623.
9. Cozzi, P. (2003) The discovery of a new potential anticancer drug: A
case history. Farmaco 58, 213–220.
27. D’Incalci, M., and Sessa, C. (1997) DNA minor groove binding
ligands: A new class of anticancer agents. Expert Opin. Invest. Drugs
6, 875–884.
28. Chartier, H. (1972) Action of sulfenyl chlorides on crotonic deriva-
tives. Bull. Soc. Chim. Fr. 7, 2887–2895.
10. Broggini, M., Marchini, S., Fontana, E., Moneta, D., Fowst, C., and
Geroni, C. (2004) Brostallicin: A new concept in minor groove DNA
binder development. Anticancer Drugs 15, 1–6.
11. Townsend, D. M., and Tew, K. D. (2003) The role of glutathione-S-
transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375.
12. Tew, K. D., Monks, A., Barone, L., Rosser, D., Akerman, G.,
Montali, J. A., Wheatley, J. B., and Schmidt, D. E., Jr. (1996)
Glutathione-associated enzymes in the human cell lines of the Na-
tional Cancer Institute Drug Screening Program. Mol. Pharmacol. 50,
149–159.
13. Moscow, J. A., Townsend, A. J., and Cowan, K. H. (1989) Elevation
of pi class glutathione S-transferase activity in human breast cancer
cells by transfection of the GST pi gene and its effect on sensitivity to
toxins. Mol. Pharmacol. 36, 22–28.
14. Townsend, A. J., Chen-Pei, D. Tu., and Cowan, K. H. (1992)
Expression of human mu or alpha class glutathione S-trans-
ferases in stably transfected human MCF-7 breast cancer cells: Effect
on cellular sensitivity to cytotoxic agents. Mol. Pharmacol. 41, 230–
236.
29. Oakley, A. J., Rossjohn, J., Lo Bello, M., Caccuri, A. M., Federici, G.,
and Parker, M. W. (1997) The three-dimensional structure of the
human pi class glutathione transferase P1-1 in complex with the
inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry
36, 576–585.
30. Raghunathan, S., Chandross, R. J., Kretsinger, R. H., Allison, T. J.,
Penington, C. J., and Rule, G. S. (1994) Crystal structure of human
class mu glutathione transferase GSTM2-2. Effects of lattice packing
on conformational heterogeneity. J. Mol. Biol. 238, 815–832.
31. Hamilton, D. S., Zhang, X., Ding, Z., Hubatsch, I., Mannervik, B.,
Houk, K. N., Ganem, B., and Creighton, D. J. (2003) Mechanism of
the Glutathione Transferase-Catalyzed Conversion of Antitumor 2-
Crotonyloxymethyl-2-cycloalkenones to GSH Adducts. J. Am. Chem.
Soc. 125, 15049–15058.
32. Townsend, D. M., Findlay, V. L., and Tew, K. D. (2005) Glutathione
S-transferases as regulators of kinase pathways and anticancer drug
targets. Methods Enzymol. 401, 287–307.