COMMUNICATIONS
[1] a) G. Süss-Fink, G. Meister, Adv. Organomet. Chem. 1993, 35, 41;
b) Metal Clusters in Catalysis (Ed.: B. C. Gates, L. Guzci, V. H.
Knozinger), Elsevier, Amsterdam, 1986; c) Catalysis by Di- and
Polynuclear Metal Cluster Complexes (Ed.: R. D. Adams, F. A.
Cotton), WILEY-VCH, New York, 1998; d) P. Braunstein, J. Rose
in Comprehensive OrganometallicChemistry , Vol. 10, (Eds.: E. W.
Abel, F. G. A. Stone, G. Wilkinson), 2nd ed., Pergamon, Oxford,
1995, Chapter 7, pp. 351 ± 385; e) P. Braunstein, J. Rose in Metal
Clusters in Chemistry (Eds.: P. Braunstein, L. A. Oro, P. R. Raithby),
Wiley-VCH, Weinheim, 1999, pp 616 ± 677.
[2] a) H. Suzuki, H. Omori, Y. Moro-oka, Organometallics 1988, 7, 2579;
b) H. Omori, H. Suzuki, Y. Moro-oka, Organometallics 1989, 8, 1576;
c) H. Omori, H. Suzuki, Y. Take, Y. Moro-oka, Organometallics 1989,
8, 2270; d) H. Suzuki, T. Takao, M. Tanaka, Y. Moro-oka, J. Chem.
Soc. Chem. Commun. 1992, 476; e) H. Suzuki, H. Omori, D. H. Lee, Y.
Yoshida, M. Fukushima, M. Tanaka, Y. Moro-oka, Organometallics
1994, 13, 1129; f) T. Takao, H. Suzuki, M. Tanaka, Organometallics
1994, 13, 2554; g) H. Suzuki, Y. Takaya, T. Takemori, M. Tanaka, J.
Am. Chem. Soc. 1994, 116, 10779; h) T. Takao, S. Yoshida, H. Suzuki,
M. Tanaka, Organometallics 1995, 14, 3855; i) K. Tada, M. Oishi, H.
Suzuki, M. Tanaka, Organometallics 1996, 15, 2422; j) A. Inagaki, Y.
Takaya, T. Takemori, H. Suzuki, M. Tanaka, M. Haga, J. Am. Chem.
Soc. 1997, 119, 625; k) K. Matsubara, R. Okamura, M. Tanaka, H.
Suzuki, J. Am. Chem. Soc. 1998, 120, 1108; l) K. Matsubara, A.
Inagaki, M. Tanaka, H. Suzuki, J. Am. Chem. Soc. 1999, 121, 7421;
m) A. Inagaki, T. Takemori, M. Tanaka, H. Suzuki, Angew. Chem.
2000, 112, 411; Angew. Chem. Int. Ed. 2000, 39, 404.
Chem. 1994, 473, 187; g) H. Tobita, H. Izumi, S. Ohnuki, M. C. Ellerby,
M. Kikuchi, S. Inomata, H. Ogino, J. Am. Chem. Soc. 1995, 117, 7013;
h) R. S. Simons, C. A. Tessier, Acta Crystallogr. Sect. C 1995, 51, 1997;
i) R. S. Simons, C. A. Tessier, Organometallics 1996, 15, 2604; j) P.
Braunstein, M. Knorr, C. Stern, Coord. Chem. Rev. 1998, 178 ± 180,
903 ± 965.
[9] Diffraction measurement was made on a RAXIS-2 imaging plate area
detector at À708C. In the reduction of the data, Lorentz and
polarization corrections were applied. The structure was solved by
the Patterson method (DIRDIF92, PATTY). All non-hydrogen atoms
were refined anisotropically, and all hydrogen atoms were refined
isotropically. Crystal data for 6: monoclinic, C2/c, a 18.528(3), b
11.429(2), c 19.22(1) , b 112.26(2)8, V 3767(2) 3, Z 4,
1calcd 1.330 gcmÀ1; 4875 reflections (58 ꢀ 2q ꢀ 608), 4044 observed
[5b]
with F > 3s(F), 324 parameters; R 0.036, Rw 0.037.
[10] For cyclopentadienyliron complexes, see: a) H. R. Allcock, P. P.
Greigger, L. J. Wagner, M. Y. Bernheim, Inorg. Chem. 1981, 20, 716;
b) B. Deppisch, S. Schafer, Acta Crystallogr. Sect. C 1983, 39, 97 5;
c) H. G. Raubenheimer, F. Scott, S. Cronje, P. H. Van Rooyan, J.
Chem. Soc. Dalton Trans. 1992, 1859; d) C. Klasen, G. Effinger, S.
Schmidt, I.-P. Lorenz, Z. Naturforsch. B 1993, 48, 705; e) I.-P. Lorenz,
W. Pohl, K. Polborn, Chem. Ber. 1996, 129, 11.
[11] The free activation energy for this dynamic process was estimated as
DG= (158C) 13.5 kcalmolÀ1. This value is comparable to those for
site exchange of hydrides in the diruthenium bis-m-silylene com-
plex [{(h5-C5Me5)Ru(m-H)}2{m-SiPh(OH)}(m-SiPh2)] (DG= (08C)
12.6 kcalmolÀ1). T. Takao, S. Yoshida, H. Suzuki, unpublished results.
[3] K. Jonas, P. Klusmann, R. Goddard, Z. Naturforsch. B 1995, 50, 394.
[4] R. H. Crabtree, Angew. Chem. 1993, 105, 828; Angew. Chem. Int. Ed.
Engl. 1993, 32, 789, and references therein.
[5] a) Diffraction measurement was made on an AFC-7R four-circle
diffractometer equipped with graphite-monochromated MoKa radia-
tion at À1808C. The compound crystallized in the space group P2/c
with a 9.409(7), b 8.539(3), c 12.565(6) , b 104.64(4)8, V
976.8(8) 3, Z 2, 1calcd 1.313 gcmÀ1
. A total of 2396 unique
Asymmetric Alkylation of Nitroalkanes**
reflections was recorded in the range 68 ꢀ 2q ꢀ 558, of which 1968
were used (F > 3s(F)) for solution and refinement. In the reduction of
the data, Lorentz/polarization corrections and empirical absorption
corrections based on azimuthal scans were applied to the data. The
structure was solved by the Patterson method (DIRDIF92, PATTY),
and all hydrogen atoms were refined isotropically and all non-
hydrogen atoms were refined anisotropically by using full-matrix
least-squares techniques on F. The final structure of 4 was refined to
R 0.027, Rw 0.026, for 167parameters. b) Crystallographic data
(excluding structure factors) for the structures reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication nos. CCDC-142856 (4), CCDC-
142858 (5), and CCDC-142857( 6). Copies of the data can be obtained
free of charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.
ac.uk).
Barry M. Trost* and Jean-Philippe Surivet
The utility of nitro compounds as synthetic intermediates
stems from the versatility of the reactivity of the nitro group.[1]
One feature arises from the ease of formation of nitronate
anions; however, their low reactivity generally limits the
reactions they undergo to carbonyl and conjugate addition.[2]
Alkylations do not normally proceed well. On the other hand,
Pd-catalyzed allylic alkylations have had some success.[3] This
success stimulates the search for an asymmetric allylic
alkylation (AAA) which has had good results in only one
case (the 1,3-diphenylallyl system) and when nitromethane
was used as solvent.[4] We here report that the Pd-catalyzed
AAA reaction[5] of nitroalkanes with cyclic allyl esters can
proceed in high yields and enantioselectivities and provide a
short asymmetric synthesis of a carbanucleoside.
[6] N. Koga, K. Morokuma, J. Mol. Struct. (THEOCHEM) 1993, 300, 181.
[7] Diffraction measurement was made on an AFC-7R four-circle
diffractometer at À508C. In the reduction of the data, Lorentz,
polarization, and empirical absorption corrections based on azimuthal
scans were applied to the data. The structure was solved by the
Patterson method (DIRDIF92, PATTY). All non-hydrogen atoms
Our initial studies focused on desymmetrization of meso
diesters [Eq. (1)].[6] Our earlier results suggested the diben-
À
were refined anisotropically, and hydrogen atoms except for Fe H
À
and Si C6H5 hydrogen atoms (refined isotropically) were fixed at
the calculated positions. Crystal data for 5: monoclinic, P21/a,
a 15.741(3), b 16.938(2), c 11.432(2) , b 102.00(1)8, V
2981.3(7) 3, Z 4, 1calcd 1.262 gcmÀ1; 8970 reflections (68 ꢀ 2q ꢀ
558), 6318 observed with F > 3s(F), 364 parameters; R 0.041, Rw
0.044.[5b]
[*] Prof. B. M. Trost, Dr. J.-P. Surivet
Department of Chemistry
Stanford University
Stanford, CA 94305-5080 (USA)
Fax : (1)650-725-0002
[8] a) H. Tobita, Y. Kawano, M. Shimoi, H. Ogino, Chem. Lett. 1987, 2247;
b) S. G. Anema, G. C. Barris, K. M. Mackay, B. K. Nicholson, J.
Organomet. Chem. 1988, 350, 207; c) S. G. Anema, K. M. Mackay,
B. K. Nicholson, M. V. Tiel, Organometallics 1990, 9, 2436; d) N. I.
Kirillova, A. I. Gusev, O. N. Kalinina, O. B. Afanasova, E. A. Cherny-
shev, Metalloorg. Khim. 1991, 4, 773; e) K. Ueno, N. Hamashima, M.
Shimoi, H. Ogino, Organometallics 1991, 10, 959; f) H. Tobita, I.
Shinagawa, S. Ohnuki, M. Abe, H. Izumi, H. Ogino, J. Organomet.
[**] We thank the National Science Foundation and the National Institutes
of Health (NIH), General Medical Sciences, for their generous
Ã
support of our programs. Rhone-Poulenc graciously provided
a
postdoctoral fellowship for J.-P. S. Mass spectra were provided by
the Mass Spectrometry Facility of the University of California, San
Francisco, supported by the NIH Division of Research Resources.
3122
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3917-3122 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 17