C O M M U N I C A T I O N S
Acknowledgment. J.T.H. gratefully acknowledges the DOE
(Grant No. DE-FG02-08ER15967) and the Northwestern Uni-
versity NSEC. M.G.K. acknowledges the ChemMatCARS Sector
15 supported by NSF/ DOE (Grant No. CHE-0535644) and the
APS at ANL (DOE Contract No. DE-AC02-06CH11357).
Supporting Information Available: Experimental procedures, X-ray
crystallographic files in CIF format, PXRD, TGA, and sorption isotherm
data. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Ferey, G. Chem. Soc. ReV. 2008, 37, 191–214. (b) Tranchemontagne,
D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Soc. ReV.
2009, 38, 1257–1283.
(2) (a) Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875–8883.
(b) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. ReV. 2009, 38, 1294–
1314.
(3) (a) Bae, Y.-S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.;
Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592–8598.
(b) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. ReV. 2009, 38, 1477–
1504. (c) Bae, Y.-S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp,
J. T.; Snurr, R. Q. Chem. Commun. 2008, 4135–4137. (d) Banerjee, R.;
Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. J. Am.
Chem. Soc. 2009, 131, 3875–3877. (e) Bae, Y.-S.; Farha, O. K.; Hupp,
J. T.; Snurr, R. Q. J. Mater. Chem. 2009, 19, 2131–2134.
(4) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc.
ReV. 2009, 38, 1330–1352.
(5) (a) Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem.
Soc. 2009, 131, 4204–4205. (b) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt,
K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. ReV. 2009, 38, 1450–1459.
(6) Min, K. S.; Suh, M. P. J. Am. Chem. Soc. 2000, 122, 6834–6840.
(7) (a) Horcajada, P.; Serre, C.; Vallet-Reg´ı, M.; Muriel Sebban, M.; Taulelle,
F.; Fe´rey, G. Angew. Chem., Int. Ed. 2006, 118, 6120–6124. (b) An, J.;
Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376–8377.
(8) Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc.
2008, 131, 458–460.
Figure 3. (a) TGA traces of 1 (top) and 2 (bottom) and (b) CO2 isotherm
at 273 K of 1 and 2.
The porosity of 1-8 was examined using CO2 at 273 K. Based
on the TGA (thermogravimetric analysis), pore evacuation/
“activation” was performed for 24 h at 90 and 100 °C for the
noncatenated and catenated, respectively. The only exception
(9) Farha, O. K.; Mulfort, K. L.; Thorsness, A. M.; Hupp, J. T. J. Am. Chem.
Soc. 2008, 130, 8598–8599.
8
was compound L5, which was activated using supercritical CO2
(10) Mulfort, K. L.; Wilson, T. M.; Wasielewski, M. R.; Hupp, J. T. Langmuir
2008, 25, 503–508.
because heating and low-boiling-solvent exchange gave a very
low surface area. Based on nonlocal density functional theory
(NLDFT) analysis (see Table SI-1), all of these compounds have
moderate surface areas. For example, compounds 1 and 2 gave
CO2 accessible surface areas of 535 and 980 m2/g respectively
(see Figure 3b). This shows that porosity and sorption properties
can be different for the two cases. Furthermore, the step in the
isotherm at P/Po ≈ 0.022 in 7, attributed to the potential dynamic
structural behavior upon activation and guest adsorption,21
disappears in 8 when the catenation is suppressed. This illustrates
the importance of studying the properties of both catenated and
noncatenated structures to completely elucidate their behavior.
In conclusion, we have demonstrated that by appropriate
design of organic building blocks (robust tetratopic carboxylates),
the degree of catenation of MOFs can be controlled. These MOFs
can now be designated as scaffolds on which to incorporate
features needed for effective catalysis, gas sorption, and chemical
separation, i.e., tunable porosities. We are currently investigating
other MOF systems to ascertain the extent to which this method
can be further generalized.
(11) Batten, R. S. CrystEngComm 2001, 3, 67–72.
(12) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2002, 295, 469–472.
(13) Hafizovic, J.; Bjorgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.;
Prestipino, C.; Lamberti, C.; Lillerud, K. P. J. Am. Chem. Soc. 2007, 129,
3612–3620.
(14) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64,
8553–8557.
(15) Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C.
J. Am. Chem. Soc. 2007, 129, 1858–1859.
(16) Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schupbach, B.; Terfort,
A.; Zacher, D.; Fischer, R. A.; Woll, C. Nat. Mater. 2009, 8, 481–484.
(17) Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan,
M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Woll, C. J. Am.
Chem. Soc. 2007, 129, 15118–15119.
(18) (a) Chen, B.; Liang, C.; Jun, Y.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky,
E, B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390–1393.
(b) Ma, B.-Q.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2005, 44, 4912–
4914.
(19) Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2008, 47, 10223–
10225.
(20) (a) Gadzikwa, T.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp,
J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2009, 131, 13613–13615. (b)
Mulfort, K. L.; Farha, O. K.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T.
J. Am. Chem. Soc. 2009, 131, 3866–3868.
(21) Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp,
J. T. Eur. J. Chem., DOI: 10.1002/chem. 200902104.
JA909519E
9
952 J. AM. CHEM. SOC. VOL. 132, NO. 3, 2010