Job/Unit: I42964
/KAP1
Date: 08-12-14 13:18:34
Pages: 9
FULL PAPER
2006; c) R. Winppeny, Molecular Cluster Magnets, World Sci-
entific, Singapore, 2012.
in a beaker until crystallization occurred. Red-brown crystals were
isolated with a yield of 20% with respect to Mn. C34H32ClMnO10S2
(755.13): calcd. C 54.08, H 4.27; found C 53.85, H 4.59.
[2]
a) R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent,
K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J.
Am. Chem. Soc. 1993, 115, 1804; b) S. M. J. Aubin, M. W.
Wemple, D. M. Adams, H.-L. Tsai, G. Christou, D. N. Hend-
rickson, J. Am. Chem. Soc. 1996, 118, 7746; c) G. Aromí,
S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K.
Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-
L. Tsai, S. Wang, M. W. Wemple, Polyhedron 1998, 17, 3005;
d) G. Christou, Polyhedron 2005, 24, 2065; e) O. Roubeau, R.
Clérac, Eur. J. Inorg. Chem. 2008, 4325; f) G. Aromí, E. K.
Brechin, Struct. Bond 2006, 122, 1–67.
Synthesis of [Mn(dbm)2(py)2](ClO4) (3): The complex was prepared
by using the same procedure as for complex 2, but with pyridine
(1.5 mL, 18.5 mmol) instead of dimethyl sulfoxide (1 mL,
11.6 mmol). Dark brown crystals were obtained. The yield was
34% with respect to Mn. C40H32ClMnN2O8 (759.09): calcd. C
63.29, H 4.25, N 3.69; found C 63.21, H 4.63, N 3.43.
X-ray Structure Determination: Single-crystal X-ray diffraction
data for 1–3 were collected with a Bruker APEX DUO dif-
fractometer with a CCD area detector by using graphite-mono-
chromated Mo-Kα radiation (λ = 0.71073 Å) at room tempera-
ture.[30] The APEXII program was used for collecting frames of
data and determining lattice parameters. Data were integrated with
the SAINT program. Absorption corrections were applied by using
SADABS.[31] The structures of complexes 1–3 were solved with the
program SHELXS-97 and subsequently completed by using the
full-matrix least-squares technique with the SHELXL 97 pro-
gram.[32] The positions of Mn and Cl atoms were easily determined,
and S, O, N, and C atoms were subsequently identified by using
difference Fourier maps. All non-hydrogen atoms were refined with
anisotropic displacement parameters. Hydrogen atoms on organic
ligands were set in calculated positions and generated by the riding
model. The structures of complexes 1[17,33] and 3[18] were previously
reported, but we recollected the data on our own samples to con-
firm their structures. CCDC-1017697 (for 2), -1018575 (for 3), and
1018576 (for 1) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[3]
[4]
a) R. E. P. Winpenny, Chem. Soc. Rev. 1998, 27, 447; b) M.
¯
Sakamoto, K. Manseki, H. Okawa, Coord. Chem. Rev. 2001,
219–221, 379; c) S. Tanase, J. Reedijk, Coord. Chem. Rev. 2006,
250, 2501; d) M. Andruh, J.-P. Costes, C. Diaz, S. Gao, Inorg.
Chem. 2009, 48, 3342; e) J. W. Sharples, D. Collison, Coord.
Chem. Rev. 2014, 260, 1; f) H. L. C. Feltham, S. Brooker, Co-
ord. Chem. Rev. 2014, 276, 1.
a) R. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328;
b) Y.-N. Guo, G.-F. Xu, Y. Guo, J. K. Tang, Dalton Trans.
2011, 40, 9953; c) P. Zhang, Y.-N. Guo, J. K. Tang, Coord.
Chem. Rev. 2013, 257, 1728; d) F. Habib, M. Murugesu, Chem.
Soc. Rev. 2013, 42, 3278.
N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu,
J. Am. Chem. Soc. 2003, 125, 8694.
a) D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem.
Rev. 2013, 113, 5110; b) P. Zhang, L. Zhang, C. Wang, S.-F.
Xue, S.-Y. Lin, J. K. Tang, J. Am. Chem. Soc. 2014, 136, 4484.
[5]
[6]
[7]
a) J. M. Zadrozny, J. R. Long, J. Am. Chem. Soc. 2011, 133,
20732; b) T. Jurca, A. Farghal, P.-H. Lin, I. Korobkov, M. Mu-
rugesu, D. S. Richeson, J. Am. Chem. Soc. 2011, 133, 15814; c)
J. M. Zadrozny, J. J. Liu, N. A. Piro, C. J. Chang, S. Hill, J. R.
Long, Chem. Commun. 2012, 48, 3897; d) A. Buchholz, A. O.
Eseola, W. Plass, C. R. Chimie. 2012, 15, 929; e) J. Vallejo, I.
Castro, R. Ruiz-García, J. Cano, M. Julve, F. Lloret, G. D.
Munno, W. Wernsdorfer, E. Pardo, J. Am. Chem. Soc. 2012,
134, 15704; f) S. Gomez-Coca, E. Cremades, N. Aliaga-Al-
calde, E. Ruiz, J. Am. Chem. Soc. 2013, 135, 7010; g) F. Yang,
Q. Zhou, Y. Q. Zhang, G. Zeng, G. H. Li, Z. Shi, B. W. Wang,
S. H. Feng, Chem. Commun. 2013, 49, 5289; h) D.-K. Cao, J.-
Q. Feng, M. Ren, Y.-W. Gu, Y. Song, M. D. Ward, Chem. Com-
mun. 2013, 49, 8863; i) J. M. Zadrozny, J. Telser, J. R. Long,
Polyhedron 2013, 64, 209; j) W. Huang, T. Liu, D. Y. Wu, J. J.
Cheng, Z. W. Ouyang, C. Y. Duan, Dalton Trans. 2013, 42,
15326; k) F. Habib, O. R. Luca, V. Vieru, M. Shiddiq, I. Korob-
kov, S. I. Gorelsky, M. K. Takase, L. F. Chibotaru, S. Hill,
R. H. Crabtree, M. Murugesu, Angew. Chem. Int. Ed. 2013, 52,
11290; Angew. Chem. 2013, 125, 11500; l) Y.-Y. Zhu, C. Cui,
Y.-Q. Zhang, J.-H. Jia, X. Guo, C. Gao, K. Qian, S.-D. Jiang,
B.-W. Wang, Z.-M. Wang, S. Gao, Chem. Sci. 2013, 4, 1802;
m) V. Chandrasekhar, A. Dey, A. J. Mota, E. Colacio, Inorg.
Chem. 2013, 52, 4554; n) E. Colacio, J. Ruiz, E. Ruiz, E. Crem-
ades, J. Krzystek, S. Carretta, J. Cano, T. Guidi, W.
Wernsdorfer, E. K. Brechin, Angew. Chem. Int. Ed. 2013, 52,
9130; Angew. Chem. 2013, 125, 9300; o) D. Y. Wu, X. X.
Zhang, P. Huang, W. Huang, M. Y. Ruan, Z. W. Ouyang, Inorg.
Chem. 2013, 52, 10976; p) R. Herchel, L. Váhovská, I. Po-
tocˇnˇák, Z. Trávnícˇek, Inorg. Chem. 2014, 53, 5896; q) A. Eich-
hofer, Y. Lan, V. Mereacre, T. Bodenstein, F. Weigend, Inorg.
Chem. 2014, 53, 1962; r) R. Bocˇa, J. Miklovicˇ, J. Titisˇ, Inorg.
Chem. 2014, 53, 2367; s) P. Cucos, F. Tuna, L. Sorace, I. Matei,
C. Maxim, S. Shova, R. Gheorghe, A. Caneschi, M. Hilleb-
rand, M. Andruh, Inorg. Chem. 2014, 53, 7738; t) M. R. Saber,
K. R. Dunbar, Chem. Commun. 2014, 50, 12266; u) M. S. Fat-
aftah, J. M. Zadrozny, D. M. Rogers, D. E. Freedman, Inorg.
Chem. 2014, 53, 10716; v) L. Chen, J. Wang, J.-M. Wei, W.
Wernsdorfer, X.-T. Chen, Y.-Q. Zhang, You Song, Z.-L. Xue,
J. Am. Chem. Soc. 2014, 136, 12213.
Magnetic Measurements: The magnetic properties were recorded at
fields up to 7 T between 1.8 and 300 K with a Quantum Design
SQUID VSM magnetometer (for 1 and 2) at 1 kOe and with a
Quantum Design MPMS-XL17 SQUID instrument (for 3) at
2 kOe. The temperature- and frequency-dependent ac susceptibility
data were collected by using an oscillating ac field of 2.0 Oe and
ac frequencies ranging from 1 to 1000 Hz for 1 and 2, whereas an
oscillating ac field of 5.0 Oe and ac frequencies ranging from 1 to
1500 Hz were used for 3. The magnetic susceptibility data were
corrected for the sample holder as well as for diamagnetism of the
constituent atoms (estimated by using Pascal constants).
Supporting Information (see footnote on the first page of this arti-
cle): Parameters of crystal data collection and refinement, experi-
mental and calculated powder XRD patterns, magnetization mea-
surements, frequency- and temperature-dependent ac susceptibility
data, and Cole–Cole plots.
Acknowledgments
We are grateful for the financial support from the National Basic
Research Program of China (No. 2013CB922102 to X.-T. C. and
Y. S.) and from the Priority Academic Program for the Develop-
ment of Jiangsu Higher Education Institutions (to Y.-Q. Z.). The
donors of the American Chemical Society Petroleum Research
Fund are also acknowledged for partial support of this research
(to Z.-L. X.).
[1] a) G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli,
MRS Bull. 2000, 25, 66–71; b) D. Gatteschi, R. Sessoli, J. Vil-
lain, Molecular Nanomagnets, Oxford University Press, Oxford,
Eur. J. Inorg. Chem. 0000, 0–0
7
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim