2
500 Macromolecules, Vol. 43, No. 5, 2010
Adelsberger et al.
the time window of NSE, and we obtain an average value of
the segmental dynamics in the micellar shell. In contrast,
above the collapse temperature, most of the segments col-
lapse and form a relatively immobile PNIPAM melt with
only few PNIPAM blocks sticking out into the solution.
Some of these blocks may bridge two micelles. Only those
very mobile segments are monitored in the experiment,
resulting in an average diffusion coefficient higher than in
the swollen state. We conclude that NSE reveals the con-
centration dependence of the PNIPAM segmental dynamics
and its (significant) changes at the collapse transition.
(12) Okada, Y.; Tanaka, F. Macromolecules 2005, 38, 4465–4471.
(13) Hirokawa, Y.; Tanaka, T.; Matsuo, E. S. J. Chem. Phys. 1984, 81,
6
379–6380.
14) Shibayama, M.; Tanaka, T.; Han, C. C. J. Chem. Phys. 1992, 97,
829–6841.
15) Liao, G.; Xie, Y.; Ludwig, K. F., Jr.; Bansil, R.; Gallagher, P.
Phys. Rev. E 1999, 60, 4473–4481.
(
(
6
(16) Pelton, R. H.; Chibante, P. Colloids Surf. 1986, 20, 247–256.
(17) Hellweg, T.; Kratz, K.; Pouget, S.; Eimer, W. Colloids Surf., A
2
002, 202, 223–232.
18) Stieger, M.; Pedersen, J. S.; Lindner, P.; Richtering, W. Langmuir
004, 20, 7283–7292.
(
(
2
19) H o€ fl, S.; Zitzler, L.; Hellweg, T.; Herminghaus, S.; Mugele, F.
Polymer 2007, 48, 245–254.
4
. Conclusion
(20) Dingenouts, N.; Norhausen, C.; Ballauff, M. Macromolecules
998, 31, 8912–8917.
21) Hellweg, T.; Dewhurst, C. D.; Eimer, W.; Kratz, K. Langmuir
004, 20, 4330–4335.
1
Combining several analytical methods, namely turbidimetry,
(
fluorescence correlation spectroscopy, dynamic light scattering,
small-angle neutron scattering, and neutron spin-echo spectro-
scopy, we have investigated thermoresponsive PS-b-PNIPAM-
b-PS triblock copolymers in aqueous solution in a wide concen-
tration range, focusing on the micelle formation, the collapse
transition, and the resulting changes of the mesoscopic structure.
Moreover, the segmental dynamics was probed. Detailed investi-
gations were possible due to the use of fully deuterated PS blocks
and contrast matching in neutron scattering and spectroscopy.
The samples were directly soluble in water, facilitating the pre-
paration of the solutions.
The triblock copolymers investigated in this work differ from
the previously studied PS-b-PNIPAM diblock copolymers in two
respects which reflect the bridging between micelles: (i) The
micelles formed by triblock copolymers form clusters right after
the collapse temperature is crossed, and no single collapsed
micelles are observed. (ii) Correlation between the micelles is
already present below the collapse temperature.
As compared to the literature, our triblock copolymers have
relatively short hydrophobic end blocks. Thus, the investigated
system is in-between the previously studied telechelic PNIPAM
homopolymers and the PS-b-PNIPAM-b-PS triblock copoly-
mers with longer PS blocks. As a consequence, the PS cores of
the micelles are very small, and these micelles form small and pre-
sumably rapidly reacting building blocks of a thermoresponsive
network.
2
(22) Anderson, M.; Hietala, S.; Tenhu, H.; Maunu, S. L. Colloid Polym.
Sci. 2006, 284, 1255–1263.
(
(
(
23) Berndt, I.; Pedersen, J. S.; Richtering, W. Angew. Chem., Int. Ed.
006, 45, 1737–1741.
24) Kujawa, P.; Watanabe, H.; Tanaka, F.; Winnik, F. M. Eur. Phys. J. E
005, 17, 129–137.
2
2
25) Wang, W.; Troll, K.; Kaune, G.; Metwalli, E.; Ruderer, M.;
Skrabania, K.; Laschewsky, A.; Roth, S. V.; Papadakis, C. M.;
M u€ ller-Buschbaum, P. Macromolecules 2008, 41, 3209–3218.
26) Koga, T.; Tanaka, F.; Motokawa, R.; Koizumi, S.; Winnik, F. M.
Macromolecules 2008, 41, 9413–9422.
(
(
(
27) Nuopponen, M.; Ojala, J.; Tenhu, H. Polymer 2004, 45, 3643–
3
650.
28) Mertoglu, M.; Garnier, S.; Laschewsky, A.; Skrabania, K.;
Storsberg, J. Polymer 2005, 46, 7726–7740.
(29) Zhang, W.; Zhou, X.; Li, H.; Fang, Y.; Zhang, G. Macromolecules
2
005, 38, 909–914.
(
(
30) Tang, T.; Castelletto, V.; Parras, P.; Hamley, I. W.; King, S. M.;
Roy, D.; Perrier, S.; Hoogenboom, R.; Schubert, U. S. Macromol.
Chem. Phys. 2006, 207, 1718–1726.
31) Zhou, X.; Ye, X.; Zhang, G. J. Phys. Chem. B 2007, 111, 5111–5115.
(32) Kirkland, S. E.; Hensarling, R. M.; McConaughty, S. D.; Guo,
Y.; Jarrett, W. L.; McCormick, C. L. Biomacromolecules 2008, 9,
4
81–486.
(
(
(
(
33) Troll, K.; Kulkarni, A.; Wang, W.; Darko, C.; Bivigou Koumba,
A. M.; Laschewsky, A.; M u€ ller-Buschbaum, P.; Papadakis, C. M.
Colloid Polym. Sci. 2008, 286, 1079–1092.
34) Bivigou-Koumba, A. M.; Kristen, J.; Laschewsky, A.; M u€ ller-
Buschbaum, P.; Papadakis, C. M. Macromol. Chem. Phys. 2009,
2
10, 565–578.
35) Jain, A.; Kulkarni, A.; Bivigou Koumba, A. M.; Wang, W.; Busch,
P.; Laschewsky, A.; M u€ ller-Buschbaum, P.; Papadakis, C. M.
Macromol. Symp., in press.
36) Bivigou-Koumba, A. M.; G o€ rnitz, E.; Laschewsky, A.; M u€ ller-
Buschbaum, P.; Papadakis, C. M. Colloid Polym. Sci. 2010, 288,
DOI: 10.1007s00396-009-2179-9.
(37) Nyk €a nen, A.; Nuopponen, M.; Hiekkataipale, P.; Hirvonen, S.-P.;
Soininen, A.; Tenhu, H.; Ikkala, O.; Mezzenga, R.; Ruokolainen,
J. Macromolecules 2008, 41, 3243–3239.
38) Wang, W.; Metwalli, E.; Perlich, J.; Troll, K.; Papadakis, C. M.;
Cubitt, R.; M u€ ller-Buschbaum, P. Macromol. Rapid Commun.
Acknowledgment. We thank W. Doster and A.-K. Sommer
for assistance with the DLS experiments and fruitful discussions.
We kindly acknowledge given beam time by the J u€ lich Centre
for Neutron Science at FRM II. This work was supported by
the DFG priority program SPP1259 “Intelligente Hydrogele”
(
Pa771/4, Mu1487/8, La611/7, He2995/2-2). A.M.B.-K. grate-
fully acknowledges a personal grant from Deutscher Akade-
mischer Austauschdienst (DAAD).
(
References and Notes
2
009, 30, 114–119.
(
1) Das, M.; Zhong, H.; Kumacheva, E. Annu. Rev. Mater. Res. 2002,
(39) Moad, G.; Rizzardo, E.; Thang, S. H. Acc. Chem. Res. 2008, 41,
1133–1142.
36, 117–311.
(
(
(
2) Karg, M.; Hellweg, T. Curr. Opin. Colloid Interface Sci. 2009, 14, 438–450.
3) Hoffman, A. S. J. Controlled Release 1987, 6, 297–305.
4) Coughlan, D. C.; Quilty, F. P.; Corrigan, O. I. J. Controlled Release
(40) Jake ꢁs , J. Collect. Czech. Chem. Commun. 1995, 60, 1781–1791.
(41) Engels, R.; Clemens, U.; Kemmerling, G.; N o€ ldgen, H.; Schelten,
J. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 604, 147–149.
(42) These samples were erroneously labeled 170 mg/mL in ref 35.
(43) Heskins, M.; Guillet, J. E. J. Macromol. Sci., Part A 1968, 2, 1441–
1455.
2004, 98, 97–114.
(5) Schmaljohann, D. Adv. Drug Delivery Rev. 2006, 58, 1655–1670.
6) Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. J. Membr. Sci. 1991, 64,
(
2
83–294.
(44) F o€ rster, S.; Burger, C. Macromolecules 1998, 31, 879–891.
(45) Monkenbusch, M.; Sch €a tzler, R.; Richter, D. Nucl. Instrum.
Methods Phys. Res. 1997, A399, 301–323.
(46) Holderer, O.; Monkenbusch, M.; Sch €a tzler, R.; Kleines, H.;
Westerhausen, W.; Richter, D. Meas. Sci. Technol. 2008, 19, 034022.
(47) Souaille, M.; Fischer, H. Macromolecules 2002, 35, 248–261.
(48) Pallares, J.; Jaramillo-Soto, G.; Flores-Cata n~ a, C.; Vivaldo Lima,
E.; Lona, L. M. F.; Penlidis, A. J. Macromol. Sci., Part A: Pure
Appl. Chem. 2006, 43, 1293–1322.
(
(
7) Park, Y. S.; Ito, Y.; Imanishi, Y. Langmuir 1998, 14, 910–914.
8) Nyk €a nen, A.; Nuopponen, M.; Laukkanen, A.; Hirvonen, S.-P.;
Rytel €a , M.; Turunen, O.; Tenhu, H.; Mezzenga, R.; Ikkala, O.;
Ruokolainen, J. Macromolecules 2007, 40, 5827–5834.
(
9) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163–249.
(
10) Lin, S.-Y.; Chen, K.-S.; Run-Chu, L. Polymer 1999, 40, 2619–
624.
11) Katsumoto, Y.; Tanaka, T.; Sato, H.; Ozaki, Y. J. Phys. Chem. A
002, 106, 3429–3435.
2
(
2
(49) Bhutto, A. A. J. Res. Sci. 2003, 14, 261–269.