New Aminoacylase from Streptomyces mobaraensis
1947
the hydrolysis of N-acetyl-L-Met was studied to make
References
1) Birnbaum SM, Levintow L, Kingsley RB, and Greenstein JP,
clear the difference in specific activity at different
substrate concentrations. The substrate dependency of
the initial reaction rate followed Michaelis-Menten
kinetics (data not shown), and the Km value for
hydrolysis of N-acetyl-L-Met was determined to be
11:3 ꢂ 1:3 mM with Vmax of 750 ꢂ 51 mmol/(mg ꢃ min)
from the Lineweaver-Burk plot. The ratio of the initial
rate for hydrolysis of 3 mM to that of 15 mM N-acetyl-L-
Met was evaluated to be 1/2.7 using the kinetic values
determined, similar to the experimental results above.
Sm-AA was characterized by its high reactivity
towards N-(middle/long)-chain-fatty-acyl-L-amino acids
as well as N-acetyl-L-amino acids. To date, several long-
chain aminoacylases that catalyze N-(middle/long)-
chain-acyl-L-amino acids have been isolated and char-
acterized. Among them, long-chain-acyl aminoacylase
from M. smegmatis shows the ability to hydrolyze N-
decanoyl-, lauroyl-, myristoyl-, palmitoyl-, stearoyl-,
and arachidoyl-aspartic acid; but it does not hydrolyze
N-acetyl-, butyl-, hexanoyl-, or octanoyl-aspartic
acid.17,18) Short-chain-acyl aminoacylase from M. smeg-
matis hydrolyzes N-acetyl-aspartic acid but hydrolytic
activities are extremely low towards N-butyl-, hexanoyl-,
octanoyl-, decanoyl-, and palmitoyl-aspartic acid.17,18)
N-Long-chain-acyl aminoacylase I from P. diminuta
hydrolyzes only N-(middle/long)-chain-fatty-acyl-glu-
tamic acids.19) N-Long-chain-acyl aminoacylase II from
P. diminuta hydrolyzes N-(middle/long)-chain-fatty-
acyl-amino acids.20) These N-long-chain-acyl amino-
acylases show no activity towards N-acetyl-amino
acids.19,20) Carboxypeptidase G3 from Pseudomonas
sp. acts only on N-fatty-acyl-DL-glutamic acids with a
chain length of C2 to C16, and it does not hydrolyze N-
octanoyl-DL-amino acids for the octanoyl derivatives of
amino acids, with the exception of DL-glutamic acid.21)
The genes for the enzymes that catalyze N-(middle/
long)-chain-acyl-L-amino acids are yet be identified with
the noted exception of penicillin V acylase from
S. mobaraensis, which has been analyzed by our group,
and has been found to hydrolyze not only penicillin V
but also N-lauroyl amino acids, although it does not act
on N-acetyl-L-amino acids.24,25) On the other hand, a
number of short-chain-acyl aminoacylases reportedly
hydrolyze N-acetyl-L-amino acids, such as those from
hog kidney,1) A. oryzae,5) A. denitrificans DA181,7)
B. stearothermophilus,10) L. lactis MG1363,11) and
S. mobaraensis.14) The genes for some of the amino-
acylases have been analyzed,10,11,34–36) but the 3D
conformations have not, with the exception of porcine
kidney aminoacylase.36)
J. Biol. Chem., 194, 455–470 (1952).
2) Kordel W and Schneider F, Biochim. Biophys. Acta, 445, 446–
¨
457 (1976).
3) Gade W and Brown JL, Biochim. Biophys. Acta, 662, 86–93 (1981).
4) Lugay JC and Aronson JN, Biochim. Biophys. Acta, 191, 397–
414 (1969).
5) Chibata I, Ishikawa T, and Yamada S, Bull. Agr. Chem. Soc.
Japan, 21, 304–307 (1957).
6) Gentzen I, Loffler HG, and Schneider F, Z. Naturforsch., 35 c,
¨
544–550 (1980).
7) Yang YB, Hu HL, Chang MC, Li H, and Tsai YC, Biosci.
Biotechnol. Biochem., 58, 204–205 (1994).
8) Wakayama M, Shiiba E, Sakai K, and Moriguchi M, J. Ferment.
Bioeng., 85, 278–282 (1998).
9) Cho HY, Tanizawa K, Tanaka H, and Soda K, Agric. Biol.
Chem., 51, 2793–2800 (1987).
10) Sakanyan V, Desmarez L, Legrain C, Charlier D, Mett I,
Kochikyan A, Savchenko A, Boyen A, Falmagne P, Pierard A,
and Glansdorff N, Appl. Environ. Microbiol., 59, 3878–3888
(1993).
11) Curley P, Van Der Does C, Driessen AJ, and Van Sinderen D,
Arch. Microbiol., 179, 402–408 (2003).
12) Ishikawa K, Ishida H, Matsui I, Kawarabayasi Y, and Kikuchi
H, Appl. Environ. Microbiol., 67, 673–679 (2001).
13) Toogood HS, Hollingsworth EJ, Brown RC, Taylor IN, Taylor
SJC, McCague R, and Littlechild JA, Extremophiles, 6, 111–
122 (2002).
14) Koreishi M, Asayama F, Imanaka H, Imamura K, Kadota M,
Tsuno T, and Nakanishi K, Biosci. Biotechnol. Biochem., 69,
1914–1922 (2005).
15) Chibata I, Tosa T, Sato T, and Mori T, Methods Enzymol., 44,
746–759 (1976).
16) Sato T and Tosa T, Bioprocess Technol., 16, 3–14 (1993).
17) Nagai S and Matsumoto J, J. Biochem., 56, 465–476 (1964).
18) Matsumoto J and Nagai S, J. Biochem., 72, 269–279 (1972).
19) Fukuda H, Iwade S, and Kimura A, J. Biochem., 91, 1731–1738
(1982).
20) Shintani Y, Fukuda H, Okamaoto N, Murata K, and Kimura A,
J. Biochem., 96, 637–643 (1984).
21) Yasuda N, Kaneko M, and Kimura Y, Biosci. Biotechnol.
Biochem., 56, 1536–1540 (1992).
22) Koreishi M, Kawasaki R, Imanaka H, Imamura K, and
Nakanishi K, J. Am. Oil Chem. Soc., 82, 631–637 (2005).
23) Koreishi M, Kawasaki R, Imanaka H, Imamura K, and
Nakanishi K, J. Biotechnol., 141, 160–165 (2009).
24) Koreishi M, Zhang D, Imanaka H, Imamura H, Adachi S, Matsuno
R, and Nakanishi K, J. Agric. Food Chem., 54, 72–78 (2006).
25) Zhang D, Koreishi M, Imanaka H, Imamura K, and Nakanishi
K, J. Biotechnol., 128, 788–800 (2007).
26) Kurihara T, Takeda H, Ito H, and Sagawa K, Yakugaku Zasshi,
89, 531–537 (1969).
27) Herai S, Hashioto Y, Higashibata H, Maseda H, Ikeda H, Omura
S, and Kobayashi M, Proc. Natl. Acad. Sci., 101, 14031–14035
(2004).
28) Kieser T, Bibb MJ, Buttner MJ, Chater KF, and Hopwood DA,
‘‘Practical Streptomyces Genetics,’’ The John Innes Foundation,
Norwich, pp. 161–240 (2000).
Hence, it would be interesting to compare the 3D
structures of short-chain-acyl aminoacylases, long-
chain-acyl aminoacylases, and Sm-AA, and this is a
future task.
29) Fukatsu H, Herai S, Hashimoto Y, Maseda H, Higashibata H,
and Kobayashi M, Protein Expr. Purif., 40, 212–219 (2005).
30) Laemmli UK, Nature, 277, 680–685 (1970).
31) Steele M, Marcone M, Gyles C, Chan VL, and Odumeru J,
Protein Eng. Des. Sel., 19, 17–25 (2006).
Acknowledgment
32) Larson KS and Auld DS, Biochemistry, 28, 9620–9625 (1989).
33) Marechal EM, Christine M, Block MA, and Douce R, ASBMB
J., 270, 5714–5722 (1995).
We thank Dr. Michihiko Kobayashi and Dr. Yoshiteru
Hashimoto of the University of Tsukuba for providing
us technical information for the transformation, as
well as expression plasmid pSH1927) and S. lividans
TK24 cells.
34) Cook RM, Burke BJ, Buchhagen DL, Minna JD, and Miller YE,
J. Biol. Chem., 268, 17010–17017 (1993).
35) Jakob M, Miller YE, and Rohm KH, Biol. Chem. Hoppe-Seyler,
373, 1227–1231 (1992).
¨
36) Ambrosio CD, Talamo F, Vitale RM, Amodeo P, Tell G,
Ferrara L, and Scaloni A, Biochemistry, 42, 4430–4443 (2003).