7682
R.L. Arechederra, S.D. Minteer / Electrochimica Acta 55 (2010) 7679–7682
determined for glycerol and glyceraldehyde are consistent with
the literature values for ethanol at PQQ-ADH (52 mole/min/mg)
[35] and acetaldehyde at PQQ-AldDH (430 mole/min/mg) [36].
Oxalate oxidase shows a VMAX for oxalate oxidase in TBAB and
TEHA modified Nafion® membranes of 15.8 mole/min/mg and
14.2 mole/min/mg, respectively, which is lower than the VMAX
for oxalate at oxalate oxidase in solution (34 mole/min/mg) [30].
This shows that the kinetics of oxalate oxidase are different for
enzymes in both polymers. The literature value for KM for the natu-
ral substrate (ethanol) and PQQ-ADH enzyme is 34 mM [35]. The KM
value for acetaldehyde substrate and PQQ-AldDH enzyme has been
shown to be 3.3 mM in the literature [36]. The literature value for
KM for the natural substrate oxalic acid and oxalate oxidase enzyme
is 0.78 mM [30]. The KM values determined for all three immobi-
lized enzyme with their non-natural substrates were lower than
the values reported in the literature for free enzyme in solution
indicating that the KM for the non-natural substrate is different for
these enzymes immobilized on the electrodes. This is expected due
to the fact that the substrate binding for a non-natural substrate is
expected to be different than the natural substrate.
References
[1] G.T.R. Palmore, Trend. Biotechnol. 22 (2004) 99.
[2] C.M. Halliwell, E. Simon, C. Toh, A.E.G. Cass, P.N. Bartlett, Bioelectrochemistry
55 (2002) 21.
[3] R.L. Arechederra, S.D. Minteer, Electrochim. Acta 53 (2008) 6698.
[4] R.L. Arechederra, S.D. Minteer, Fuel Cells 9 (2009) 63.
[5] R.L. Arechederra, B.L. Treu, S.D. Minteer, J. Power Sources 173 (2007)
156.
[6] M. Germain, R.L. Arechederra, S.D. Minteer, J. Am. Chem. Soc. 130 (2008)
15272.
[7] G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, J. Electroanal. Chem.
443 (1998) 155.
[8] S.C. Barton, H. Kim, G. Binyamin, Y. Zhang, A. Heller, J. Phys. Chem. B 105 (2001)
11917.
[9] A. Heller, Curr. Opin. Chem. Biol. 10 (2006) 664.
[10] N. Mano, F. Mao, A. Heller, J. Am. Chem. Soc. 125 (2003) 6588.
[11] V. Soukharev, N. Mano, A. Heller, J. Am. Chem. Soc. 126 (2004) 8368.
[12] I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A.F. Buckmann, A. Heller,
J. Am. Chem. Soc. 118 (1996) 10321.
[13] Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, K. Kano, Phys. Chem. Chem.
Phys. 9 (2007) 1793.
[14] B.L. Treu, R.L. Arechederra, S.D. Minteer, J. Nanosci. Nanotechnol. 9 (2009)
2374.
[15] A.B. Anderson, E. Grantscharova, S. Seong, J. Electrochem. Soc. 143 (1996)
2075.
[16] D.R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Langmuir 15 (1999) 774.
[17] C. Roth, N. Benker, S. Zils, R. Chenitz, A. Issanin, H. Fuess, Oldenbourg 221 (2007)
1549.
4. Conclusions
[18] H. Igarashi, T. Fujino, Y. Zhu, H. Uchida, M. Watanabe, Phys. Chem. Chem. Phys.
3 (2001) 306.
[19] G. Yildiz, F. Kadirgan, J. Electrochem. Soc. 141 (1994) 723.
[20] M.L. Avramov-Ivic, J.M. Leger, C. Lamy, V.D. Jovic, S.D. Petrovic, J. Electroanal.
Chem. 308 (1991) 309.
[21] A. Kahyaoglu, B. Beden, C. Lamy, Electrochim. Acta 29 (1984) 1489.
[22] S.D. Minteer, in: S.D. Minteer (Ed.), Alcoholic Fuels, CRC Press, New York, 2006,
p. 191.
[23] F. Vigier, C. Coutanceau, A. Perrard, E.M. Belgsir, C. Lamy, J. Appl. Chem. 34
(2004) 439.
[24] W. Zhou, Catal. B: Environ. 46 (2003) 273.
[25] S. Song, L. Chen, J. Lie, Z. Wei, Q. Xin, Dianhuaxue 8 (2002) 105.
[26] S. Topcagic, B.L. Treu, S.D. Minteer, Proc.-Electrochem. Soc. 2004–2018 (2005)
230.
[27] B.L. Treu, D.S. Minteer, Bioelectrochemistry 74 (2008) 73.
[28] T.L. Klotzbach, M.M. Watt, Y. Ansari, S.D. Minteer, J. Membr. Sci. 282 (2006)
276.
[29] M. Torimura, K. Kano, T. Ikeda, T. Ueda, Chem. Lett. 6 (1997) 525.
[30] M.M. Whittaker, H. Pan, E.T. Yukl, J.W. Whittaker, J. Biol. Chem. 282 (2007)
7011.
[31] CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, Florida,
2006.
[32] P.T. Inglefield, X. Gong, A. Bandis, A. Tao, G. Meresi, Y. Wang, A.A. Jones, W. Wen,
Polymer 42 (2001) 6485.
Overall, the data determined from these electrochemical experi-
ments will be useful for further development of the glycerol biofuel
cell anodes and yield insight into other immobilized biocatalytic
systems. The PQQ-dependant enzymes when in direct electrical
communication with the carbon electrode exhibit activities that
are similar to enzyme in solution with the natural substrate indi-
cating the enzyme kinetics are mostly unchanged. However, the
enzyme kinetics of oxalate oxidase are different when in direct
electrical communication with a carbon electrode and employing
a non-natural substrate (mesoxalic acid) than for free enzyme in
solution with the natural substrate oxalic acid. The main limiting
factor for this system of immobilization is transport through the
modified Nafion® membrane which is two orders of magnitude
lower than that in solution. In order to enhance current density,
future work will focus on improving mass transport within the
immobilization layer while also engineering the enzymes to handle
non-natural substrates more efficiently.
[33] V.K. Pardo-Yissar, E.I. Willner, A.B. Kotlyar, C. Sandersc, H. Lillc, Faraday Disc
116 (2000) 119.
Acknowledgements
[34] N. Mano, H.-H. Kim, Y. Zhang, A. Heller, J. Am. Chem. Soc. 124 (2002)
6480.
[35] M. Ameyama, E. Shinagawa, K. Matsushita, O. Adachi, Agric. Biol. Chem. 49
(1985) 699.
[36] M. Ameyama, O. Adachi, Methods Enzymol. 89 (1982) 491.
The authors would like to thank the United Soybean Board and
the Air Force Office of Scientific Research for generous funding of
this work.