Journal of the American Chemical Society
Page 10 of 12
†Department of Chemistry and Biochemistry, Institute of
Advanced Biomedical Research, George Mason University,
Manassas, Virginia 20110, United States
protein. The supernatant was extracted with 4 x 800 ꢁL
of CH2Cl2. The solvent was then removed by rotary
evaporation and the residue was dissolved in 100 ꢁL
CH2Cl2 to which 10 ꢁL BSTFA was added for derivatiza-
tion of acids (Total 110 µl). These samples were directly
analyzed by chiral GC-MS (HP GCD system) with Vari-
an CP ChiraSil_DEX column (25 m length, 0.25 ꢁm di-
ameter) using a temperature program (GC Method D)
with a 1 min hold at 55 °C, followed by an increment of
0.5 °C/min to 65 °C, a 1 min hold, and then an increase
of 15 °C/min to 90 °C, a 1-min hold at 90 °C, an increase
of 20 °C/min to 200 °C, and a final 1 min hold at this
temperature (Figures S22, and S25).
1
2
3
4
5
6
7
8
Author Contributions
‡These authors contributed equally. All authors have given
approval to the final version of the manuscript.
Notes
The authors declare no competing financial interest.
9
ACKNOWLEDGMENTS
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
This work was supported by a grant from the U. S. National
Institutes of Health, GM022172, to D.E.C. We thank Will
Furuyama and Colin Gould for valuable experimental assis-
tance.
REFERENCES
(1) Lewy, D. S.; Gauss, C. M.; Soenen, D. R.; Boger, D. L.
Curr. Med. Chem. 2002, 9, 2005-2032.
(2) a) Amemiya, M.; Someno, T.; Sawa, R.; Naganawa, H.;
Ishizuka, M.; Takeuchi, T. J. Antibiot (Tokyo) 1994, 47, 541-544.
b) Fushimi, S.; Furihata, K.; Seto, H. J. Antibiot. 1989, 42, 1026-
1036. c) Palaniappan, N.; Kim, B. S.; Sekiyama, Y.; Osada, H.;
Reynolds, K. A. J. Biol. Chem. 2003, 278, 35552-35557.
(3) Mamber, S. W.; Okasinski, W. G.; Pinter, C. D.; Tunac, J.
B. J. Antibiot (Tokyo) 1986, 39, 1467-1472.
(4) a) Kong, R.; Liu, X.; Su, C.; Ma, C.; Qiu, R.; Tang, L. Chem.
Biol. 2013, 20, 45-54. b) Palaniappan, N.; Alhamadsheh, M. M.;
Reynolds, K. A. J. Am. Chem. Soc. 2008, 130, 12236-12237. c)
FosER1, the enoyl reductase domain of module 1, is apparently
catalytically silent.
(5) Shiomi, K.; Omura, S. In Macrolide Antibiotics. Chemistry,
Biology, and Practice; Second ed.; Omura, S., Ed.; Academic
Press: San Diego, CA, 2002, p 1-56.
(6) Tang, L.; Shah, S.; Chung, L.; Carney, J.; Katz, L.; Khosla,
C.; Julien, B. Science 2000, 287, 640-642.
(7) a) Akey, D. L.; Razelun, J. R.; Tehranisa, J.; Sherman, D.
H.; Gerwick, W. H.; Smith, J. L. Structure 2010, 18, 94-105. b)
Fiers, W. D.; Dodge, G. J.; Sherman, D. H.; Smith, J. L.; Aldrich,
C. C. J. Am. Chem. Soc. 2016, 138, 16024-16036.
(8) a) Olano, C.; Wilkinson, B.; Sanchez, C.; Moss, S. J.; Sheri-
dan, R.; Math, V.; Weston, A. J.; Brana, A. F.; Martin, C. J.; Oli-
ynyk, M.; Mendez, C.; Leadlay, P. F.; Salas, J. A. Chem. Biol.
2004, 11, 87-97. b) Vergnolle, O.; Hahn, F.; Baerga-Ortiz, A.;
Leadlay, P. F.; Andexer, J. N. Chembiochem 2011, 12, 1011-1014.
c) Hahn, F.; Kandziora, N.; Friedrich, S.; Leadlay, P. F. Beilstein
J. Org. Chem. 2014, 10, 634-640.
FosDH2-Catalyzed
Hydroxybutyryl-FosACP2.
Isotope
Exchange
and
of
(3S)-3-
3-
(3R)-
Hydroxybutyryl-FosACP2 (7 and 8) were generated by
incubation of 800-1000 ꢁM (3R)- or (3S)-3-
hydroxybutyryl-CoA and 200 ꢁM apo-FosACP2 with 5
ꢁM Sfp in the presence of 10 mM MgCl2 and 1 mM TCEP
in 50 mM sodium phosphate, pH 7.5 in a total volume of
100 ꢁL. After 15 min incubation at room temperature to
form (3R)- or (3S)-3-hydroxybutyryl-FosACP2 (7 or 8),
the reaction mixture was passed through a Millipore 3
KDa MWCO 500 ꢁL filter with centrifugation at 14000g
to remove unreacted acyl-CoA by buffer exchange. The
retentate (100 ꢁL) containing 7 or 8 was mixed with 300
ꢁL of [18O]-H2O-based buffer (final 18O enrichment 75
atom%.) To this solution, 50 ꢁM (final concentration)
FosDH2 was added. Samples of 95 ꢁL were withdrawn
after 0, 30 and 90 min for (3S)-3-hydroxybutyryl-
FosACP2 (8) and 0, 30, 90 and 300 min for (3R)-3-
hydroxybutyryl-FosACP2 (7). Each sample was added to
an Eppendorf tube containing 3.5% formic acid (final
concentration) and then directly analyzed by LC-ESI(+)-
MS/MS with monitoring of the pPant ejection fragment
from only the 3-hydroxybutyryl-FosACP and measure-
ment of the relative abundance of the 347 Da (16O) and
349 Da (18O) species (Figure S26 and S31.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website at DOI:10.1021/jacs.*******
Sequence alignments and protein structure comparisons,
PKS domain boundaries, SDS-PAGE and LC-MS analysis of
recombinant proteins, LC-MS/MS and chiral GC-MS analy-
sis.
(9) a) Schupp, T.; Toupet, C.; Engel, N.; Goff, S. FEMS Micro-
biol. Lett. 1998, 159, 201-207. b) August, P. R.; Tang, L.; Yoon, Y.
J.; Ning, S.; Muller, R.; Yu, T. W.; Taylor, M.; Hoffmann, D.;
Kim, C. G.; Zhang, X.; Hutchinson, C. R.; Floss, H. G. Chem.
Biol. 1998, 5, 69-79. c) Tang, L.; Yoon, Y. J.; Choi, C. Y.;
Hutchinson, C. R. Gene 1998, 216, 255-265. d) Gay, D.; You, Y.
O.; Keatinge-Clay, A.; Cane, D. E. Biochemistry 2013, 52, 8916-
8928.
AUTHOR INFORMATION
(10) a) Alhamadsheh, M. M.; Palaniappan, N.; Daschouduri,
S.; Reynolds, K. A. J. Am. Chem. Soc. 2007, 129, 1910-1911. b)
Bonnett, S. A.; Whicher, J. R.; Papireddy, K.; Florova, G.; Smith,
J. L.; Reynolds, K. A. Chem. Biol. 2013, 20, 772-783.
(11) (3R,4E)-3-Hydroxy-4-hexenoic acid (17) has the same
configuration (L) at C-3 as the corresponding (3S)-3-
hydroxybutyric acid (10), reflecting the difference in priority of
the respective propenyl and methyl substituents in the Cahn-
Ingold-Prelog nomenclature.
Corresponding Author
*David_Cane@brown.edu
ORCID
David E. Cane: 0000-0002-1492-9529
Dhara D. Shah: 0000-0002-7533-7586
Young-Ok You: 0000-0002-8036-1345
(12) To prepare 17 and it (3S)-enantiomer, synthetic ( )-ethyl-
(3RS,4E)-3-hydroxy-4-hexenoate was kinetically resolved by
incubation with Amano lipase P and vinyl acetate to give a
Present Address
ACS Paragon Plus Environment