nucleophilic functionalities at the R-carbon atom, leading to
stereodefined functionalized vinylic products efficiently.3 More-
over, with diverse and appropriate substitutes connected, allenes
can be utilized as versatile starting materials to develop
sequential reactions either employing metal catalysts or not,
affording an efficient method for preparation of many com-
pounds with synthetic and biological importance.4,5
Reaction of Allenyl Esters with Sodium Azide:
An Efficient Synthesis of E-Vinyl Azides and
Polysubstituted Pyrroles
Xian Huang,*,†,‡ Ruwei Shen,† and Tiexin Zhang†
Department of Chemistry, Zhejiang UniVersity (Xixi Campus),
Hangzhou 310028, P. R. China, and State Key Laboratory
of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences,
Shanghai 200032, P. R. China
Meanwhile, vinyl azides have drawn much attention for their
growing applications in synthesis of various heterocycles,6,7 as
well as polysubstituted pyrroles, because of their wide occur-
rence in nature,8 profound pharmaceutical activities,9 and
considerable application in material science.10 Hence, continuous
interest has been directed to development of new and efficient
synthesis of vinyl azides and polysubstituted pyrroles.11 Based
upon the above considerations and in the context of our effort
on developing new strategies toward heterocycles and related
libraries,12 herein we wish to present our findings in the reaction
of allenyl esters with sodium azide affording functionalized vinyl
azides and describe a facile synthesis of polysubstituted pyrroles
from 1-allylic 1,2-allenyl esters. To the best of our knowledge,
the reaction of allenyl esters with sodium azide has not yet been
ReceiVed NoVember 17, 2006
(4) (a) Ma, S. Pd-Catalyzed two- or three-component cyclization of
functionalized allenes. In Topics in Organometallic Chemistry; Tsuji,
J., Ed.; Springer-Verlag: Heidelberg, 2005; pp 183-210. (b) Zimmer,
R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. ReV. 2000, 100,
3067.
(5) For recent examples, see: (a) Lambert, T. H.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2002, 124, 13646. (b) Ma, S.; Yu, Z. Org. Lett. 2003,
5, 1507. (c) Brummond, K. M.; Gao, D. Org. Lett. 2003, 5, 3491. (d) Mukai,
C.; Takahashi, Y. Y. Org. Lett. 2005, 7, 5793. (e) Ma, S.; Jiao, N.; Zheng,
Z.; Ma, Z.; Lu, Z.; Ye, L; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193. (f)
Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 3937. (g) Zhu, G.;
Zhang, Z. Org. Lett. 2004, 6, 4041. (h) Inagaki, F.; Mukai, C. Org. Lett.
2006, 8, 1217. (i) Kuroda, N.; Takahashi, Y.; Yoshinaga, K.; Mukai, C.
Org. Lett. 2006, 8, 1843. (j) Ohno, H.; Takeoka, Y.; Miyamura, K.; Kadoh,
Y.; Tanaka, T. Org. Lett. 2003, 5, 4763. (k) Feldman, K. S.; Iyer, M. R. J.
Am. Chem. Soc. 2005, 127, 4590. (l) Ma, S.; Gu, Z. J. Am. Chem. Soc.
2005, 127, 6182. (m) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. J.
Am. Chem. Soc. 2006, 8, 621. (n) Ohno, H.; Miyamura, K.; Mizutani, T.;
kadoh, Y.; Takeoka, Y.; Hamaguchi, H.; Tanaka, T. Chem. Eur. J. 2005,
11, 3728. (o) Hamaguchi, H.; S., Kosaka; Ohno, H.; Tanaka, T. Angew.
Chem., Int. Ed. 2005, 44, 1513. (p) Wender, P. A.; Croatt, M. P.; Deschamps,
N. M. Angew. Chem., Int. Ed. 2006, 45, 2459.
(6) (a) Singh, P. N. D.; Carter, C. L.; Gudmundsdottir, A. D. Tetrahedron
Lett. 2003, 44, 6763. (b) Timen, A. S.; Risberg, E.; Somfai, P. Tetrahedron
Lett. 2003, 44, 5339. (c) Jonas, C. M. J. Tetrahedron 2002, 58, 2729. (d)
Alonso-Cruz, C. R.; Kennedy, A. R.; Rodriguez, M. S.; Suarez, E. Org.
Lett. 2003, 5, 3729.
(7) (a) Scriven, E. F. V.; Turnbull, K. Chem. ReV. 1988, 88, 297. (b)
Smolinsky, G.; Pryde, C. A. In The Chemistry of the Azido Group; Patai,
S., Ed.; John Wiley & Sons: London, 1971; pp 555-585. (c) Hassner, A.
In Azides and Nitrenes: ReactiVity and Utility; Scriven, E. F. V., Ed.;
Academic Press: Orlando, 1984; pp 35-94.
The nucleophilic addition of sodium azide to 1,2-allenyl
esters can generate vinyl azides in excellent yields with
excellent regio- and stereoselectivities. Moreover, pyrroles
are synthesized using 1-allyllic 1,2-allenyl esters as substrates
in t-BuOH at 65 °C. The sequential reaction for pyrroles is
developed on the basis of a novel domino process involving
nucleophilic addition, cycloaddition, denitrogenation, and
aromatization.
Allenes show unique reactivity in organic synthesis due to
the presence of the cumulated CdC double bonds.1 In past
decades, much attention has been paid to the study of their
reactivity, especially the control of the related selectivity and
their potential synthetic utilities.2-4 Recently, researchers have
found that regioselective and in some cases stereoselective
addition of allenes can be conducted by introducing various
† Zhejiang University.
‡ Shanghai Institute of Organic Chemistry.
(1) (a) Patai, S. The Chemistry of Ketenes, Allenes, and Related
Compounds; John Wiley & Sons: New York, 1980; Part 1. (b) Schuster,
H. F.; Coppola, G. M. Allenes in Organic Synthesis; John Wiley & Sons:
New York, 1984. (c) Landor, S. R. The Chemistry of Allenes; Academic
Press: New York, 1982; Vols. 1-3. (d) Krause, N.; Hashmi, A. S. K.
Modern Allene Chemistry; Wiley-VCH: Weinheim, 2004; Vols. 1-2.
(2) (a) Smadja, W. Chem. ReV. 1983, 83, 263. (b) Marshall, J. A. Chem.
ReV. 1996, 96, 31. (c) Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. ReV.
1999, 28, 199. (d) Hashimi, A. S. K. Angew. Chem., Int. Ed. 2000, 39,
3590. (e) Ma, S. Acc. Chem. Res. 2003, 36, 701. (f) Ma, S. Chem. ReV.
2005, 105, 2829. (g) Reissing, H. U.; Schade, W.; Amombo, M. O.; Pulz,
R.; Hausherr, A. Pure Appl. Chem. 2002, 175.
(8) (a) Christophersen, C. In The Alkaloids; Brossei, A., Ed.; Academic
Press: Orlando, 1985; Vol. 24, Chapter 2. (b) Boger, D. L.; Boyce, C. W.;
Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54. (c)
Battersby, A. R. Nat. Prod. Rep. 2000, 17, 507. (d) Hoffmann, H.; Lindel,
T. Synthesis 2003, 1753. (e) Fu¨rstner, A. Angew. Chem., Int. Ed. 2003, 42,
3582.
(9) (a) Huffman, J. W. Curr. Med. Chem. 1999, 6, 705. (b) Cozzi, P.;
Mongelli, N. Curr. Pharm. Des. 1998, 4, 181. (c) Wilkerson, W. W.;
Galbraith, W.; Gans-Brangs, K.; Grubb, M.; Hewes, W. E.; Jaffee, B.;
Kenney, J. P.; Kerr, J.; Wong, N. J. Med. Chem. 1994, 37, 988. (d)
Wilkerson, W. W.; Copeland, R. A.; Covington, M.; Trzaskos, J. M. J.
Med. Chem. 1995, 38, 3895.
(3) (a) Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817. (b)
Ma, S.; Wei, Q. Eur. J. Org. Chem. 2000, 1, 1939. (c) Ma, S.; Wei, Q.;
Wang, H. Org. Lett. 2000, 2, 3893. (d) Ma, S.; Li, L. Synlett 2001, 1, 1206
and references therein.
(10) (a) Deronzier, A.; Moutet, J.-C. Curr. Top. Electrochem. 1994, 3,
159. (b) Baumgarten, M.; Tyutyulkov, N. Chem. Eur. J. 1998, 4, 987. (c)
Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. ReV. 1991, 20, 391. (d)
Yamaguchi, S.; Tamao, K. J. Organomet. Chem. 2002, 653, 223.
10.1021/jo062376m CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/19/2007
1534
J. Org. Chem. 2007, 72, 1534-1537