Molecules 2019, 24, 2884
16 of 17
19. Reetz, M.T. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv.
Mater. 1997, 9, 943–954.
20. Frenkel-Mullerad, H.; Avnir, D. Sel-gel materials as efficient enzyme protectors: Preserving the activity of
phosphatases under extreme pH conditions. J. Am. Chem. Soc. 2005, 127, 8077–8081.
21. Hinberg, I.; Kapoulas, A.; Korus, R.; O’Driscoll, K. Gel entrapment of enzymes: Kinetic studies of
immobilized glucose oxidase. Biotechnol. Bioeng. 1974, 16, 159–168.
22. Wang, Z.; Etienne, M.; Kohring, G.W.; Walcarius, A. Critical effect of polyelectrolytes on the
electrochemical response of dehydrogenase entrapped in sol-gel thin films. Electroanalysis 2010, 22, 2092–
2100.
23. Li, Y.Z.; He, N.; Wang, X.; Chang, W.B.; Ci, Y.X. Mimicry of peroxidase by immobilization of hemin on N-
isopropylacrylamide-based hydrogel. Analyst 1998, 123, 359–364.
24. Mahajan, R.; Gupta, V.K.; Sharma, J. Comparison and suitability of gel matrix for entrapping higher content
of enzymes for commercial applications. Indian J. Pharm. Sci. 2010, 2, 223–228.
25. Konsoula, Z.; Liakopoulou-Kyriakides, M. Thermostable α-amylase production by Bacillus subtilis
entrapped in calcium alginate gel capsules. Enzym. Microb. Technol. 2006, 39, 690–696.
26. Gao, Y.; Zhao, F.; Wang, Q.; Zhang, Y.; Xu, B. Small peptide nanofibers as the matricies of molecular
hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chem. Soc. Rev. 2010, 39, 3425–
3433.
27. Kim, J.H.; Lim, S.Y.; Nam, D.H.; Ryu, J.; Ku, S.H.; Park, C.B. Self-assembled photoluminescent peptide
hydrogel as a versatile platform for enzyme-based optical biosensors. Biosens. Bioelectron. 2011, 26, 1860–
1865.
28. Wang, Q.; Yang, Z.; Wang, L.; Ma, M.; Xu, B. Molecular hydrogel-immobilized enzymes exhibit
superactivity and high stability in organic solvents. Chem. Commun. 2007, 1032–1034, doi:10.1039/b615223f.
29. Wang, Q.; Yang, Z.; Gao, Y.; Ge, W.; Wang, L.; Xu, B. Enzymatic hydrogelation to immobilize an enzyme
for high activity and stability. Soft Matter 2008, 4, 550–553.
30. Wang, Q.; Yang, Z.; Zhang, X.; Xiao, X.; Chang, C.K.; Xu, B. A supramolecular-hydrogel-encapsulated
Hemin as an Artifical Enzyme to Mimic Peroxidase. Angew. Chem. Int. Ed. 2007, 46, 4285–4289.
31. Escuder, B.; Rodriguez-Llansola, F.; Miravet, J.F. Supramolecular gels as active media for organic reactions
and catalysis. New J. Chem. 2010, 34, 1044–1054.
32. Hickling, C.; Toogood, H.S.; Saiani, A.; Scrutton, N.S.; Miller, A.F. Nanofibrillar Peptide Hydrogels for the
Immobilization of Biocatalysts for Chemical Transformations. Macromol. Rapid Commun. 2014, 35, 868–874.
33. Basak, S.; Singh, I.; Banerjee, A.; Kraatz, H.-B. Amino-Acid Based Amphiphilic Hydrogels: Metal-Ion
Induced Tuning of Mechanical and Thermal Stability. RSC Adv. 2017, 7, 14461–14465.
34. Benoiton, N.L.; Kuroda, K.; Chen, F.M.F. Racemization in Peptide Synthesis: A Laboratory Experiment for
Senior Undergraduates. Int. J. Pept. Protein Res. 1980, 15, 475–179.
35. Yan, C.; Pochan, D.J. Rheological properties of peptide-based hydrogels for biomedical and other
applications. Chem. Soc. Rev. 2010, 39, 3528–3540.
36. Orbach, R.; Mironi-Harpaz, I.; Adler-Abramovich, L.; Mossou, E.; Mitchell, E.P.; Forsyth, V.T.; Gazit, E.;
Seliktar, D. The rheological and structural properties of Fmoc-peptide-based-hydrogels: The effect of
aromatic molecular architecture on self-assembly and physical characteristics. Langmuir 2012, 28, 2015–
2022.
37. Saha, K.; Keung, A.J.; Irwin, E.F.; Li, Y.; Little, L.; Schaffer, D.V.; Healy, K.E. Substrate Modulus Directs
Neural Stem Cell Behavior. Biophys. J. 2008, 95, 4426–4438.
38. Wei, Z.; Yang, J.H.; Zhou, J.; Xu, F.; Zrinyi, M.; Dussault, B.H.; Osada, Y.; Chen, Y.M. Self-healing gels based
on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 2014, 43, 8114–8131.
39. Nanda, J.; Biswas, A.; Banerjee, A. Single Amino Acid-Based Thixotropic Hydrogel Formation and pH-
Dependent Morphological Change of Gel Nanofibers. Soft Matter 2013, 9, 4198–4208.
40. Amdursky, N.; Stevens, M.M. Circular Dichroism of Amino Acids: Following the Structural Formation of
Phenylalanine. ChemPhysChem 2015, 16, 2768–2774.
41. Kirin, S.I.; Kraatz, H.B.; Metzler-Nolte, N. Systematizing structural motifs and nomenclature in 1, n’-
disubstituted ferrocene peptides. Chem. Soc. Rev. 2006, 35, 348–354.
42. Adhikari, B.; Afraisibi, R.; Kraatz, H.B. Ferrocene-Tryptophan Conjugate: An Example of a Redox-
Controlled Reversible Supramolecular Nanofiber Network. Organometallics 2013, 32, 5899–5905.