COMMUNICATIONS
Typical recovery of reaction products:[12] compound 4 (0.350 g, 0.514 mmol)
was dissolved in CH3OH/CH3CN (1:1) and kept standing for a few weeks at
room temperature. The green crystals which separated from the reaction
mixture were collected, and the brown filtrate was evaporated in vacuo.
The residue was dissolved in concentrated aqueous NH3 (10 mL) and
extracted with CHCl3 (4 Â 10 mL). The combined organic fractions were
washed with concentrated aqueous NaCl (3 Â 10 mL), dried over Na2SO4,
filtered, and concentrated in vacuo to leave a brown oil. Compounds 2 and
3 were separated by column chromatography, and their structures and
[8] a) H. Adams, N. A. Bailey, D. E. Fenton, Q.-Y. He, M. Ohba, H.
Okawa, Inorg. Chim. Acta 1994, 215, 1; b) H. Adams, N. A. Bailey,
I. K. Campbell, D. E. Fenton, Q.-Y. He, J. Chem. Soc. Dalton Trans.
1996, 2233.
[9] X-ray crystal structure determination: The X-ray diffraction data were
collected at 295 K with a Rigaku AFC-5R four-circle diffractometer
using graphite-monochromated CuKa radiation (l 1.54178). Crys-
tal data for 1: Formula C76H108N4O9Cu2, Mw 1348.80, crystal size:
0.3 Â 0.1 Â 0.1 mm, monoclinic, space group P21/n, a 26.782(4), b
10.672(2), c 26.819(3) , b 94.33(1)8, V 7643(2) 3, Z 4,
1
yields were determined by H NMR. The structure of ligand HL' in 5 was
determined by X-ray analysis of 5 and by 1H NMR after removal of CuII as
1calcd 1.352g cmÀ3
,
m 12.39 cmÀ1
F(000) 3112.00, 13682 inde-
,
1
described above. Compound 2: Yield, 15%; H NMR (300 MHz, CDCl3):
pendent reflections, 8230 reflections used, 821 parameters, R 0.074,
Rw 0.085 (I > 2.00s(I)). In the asymmetric unit there were two
crystallographically independent complex molecules, which have very
similar structures and may be regarded as mirror images arising from
the coordination of the tertiary amine nitrogen to CuII. Crystal data
for 4: Formula C37H56N2O3Cl2Cu, Mw 711.31, crystal size: 0.17 Â
d 1.33 (s, 9H; (CH3)3C), 1.43 (s, 9H; (CH3)3C), 7.34 (d, 1H; phenol-H),
7.59 (d, 1H; phenol-H), 9.87 (s, 1H; phenol-OH), 11.64 (s, 1H; CHO).
Compound 3: Yield, 15%; 1H NMR (300 MHz, CDCl3): d 1.28(s, 9H;
(CH3)3C), 1.43 (s, 9H; (CH3)3C), 3.93 (s, 2H; CH2), 3.98(s, 2H; CH 2), 6.84
(d, 2H; phenol-H), 7.2 (m, 3H; py-H, phenol-H), 7.66 (td, 1H; py-H), 8.58
(d, 1H; py-H). Compound 5: Yield, 12%; elemental analysis (%) calcd for
C35H50N2O2CuCl2: C 63.19, H 7.58, N 4.21; found: C 63.07, H 7.532, N 4.27.
HL': 1H NMR (300 MHz, CDCl3): d 1.11 (s, 9H, (CH3)3C), 1.33 (s, 9H,
(CH3)3C), 1.37 (s, 9H, (CH3)3C), 1.47 (s, 9H, (CH3)3C), 3.47 (q, 2H; CH2),
3.73 (q, 2H; CH2), 6.27 (d, 1H; phenol-H), 6.90 (d, 1H; phenol-H), 7.14
(dd, 1H; py-H), 7.16 (d, 1H; phenol-H), 7.19 (d, 1H; py-H), 7.37 (d, 1H;
phenol-H), 7.60 (td, 1H; py-H), 8.52 (d, 1H; py-H).
Å
0.10 Â 0.06 mm, triclinic, space group P1, a 13.865(4), b
16.048(5), c 10.378(5) ,
a 98.69(5),
b 104.67(4), g
112.64(2)8, V 1980(1) 3, Z 2, 1calcd 1.193 gcmÀ3, m 22.80 cmÀ1
,
F(000) 758.00, 5791 independent reflections, 5791 reflections used,
407 parameters, R 0.083, Rw 0.128( I > 2.00s(I)). Crystal data for
5: Formula C35H50N2O2Cl2Cu, Mw 665.24, crystal size: 0.20 Â 0.15 Â
0.03 mm, monoclinic, space group P21/a, a 18.054(4), b 12.712(7),
c 18.314(4) , b 116.00(1)8, V 3783(2) 3, Z 4, 1calcd
Received: November 11, 1999 [Z14258]
1.168gcm À3, m 23.35 cmÀ1, F(000) 2256.00, 5357 independent re-
flections, 4926 reflections used, 380 parameters, R 0.069, Rw 0.107
(I > 2.00s(I)). Crystallographic data (excluding structure factors) for
the structures reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publica-
tion nos. CCDC-136595, -136596, and -136821. Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road,
Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@
ccdc.cam.ac.uk)..
[1] J. W. Whittaker, Met. Ions Biol. Syst. 1994, 30, 315.
[2] N. Itoh, S. E. V. Phillips, K. D. S. Yadav, P. F. Knowles, J. Mol. Biol.
1994, 238, 794.
[3] a) M. M. Whittaker, J. W. Whittaker, H. Milburn, A. Quick, J. Biol.
Chem. 1990, 265, 9610; b) M. L. McGlashen, D. D. Eads, T. G. Spiro,
J. W. Whittaker, J. Phys Chem. 1995, 99, 4918; c) A. J. Baron, C.
Stevens, C. Wilmot, K. D. Seneviratne, V. Blakeley, D. M. Dooley,
S. E. V. Phillips, P. F. Knowles, M. J. McPherson, J. Biol. Chem. 1994,
269, 25095; d) P. F. Knowles, R. D. Brown III, S. H. Koenig, S. Wang,
R. A. Scott, M. A, McGuirl, D. E. Brown, D. M. Dooley, Inorg. Chem.
1995, 34, 3895; e) M. P. Reynolds, A. J. Baron, C. M. Wilmot, E.
Vinecombe, C. Steven, S. E. V. Phillips, P. F. Knowles, M. J. McPher-
son, J. Biol. Inorg. Chem. 1997, 2, 327; f) K. Clark, J. E. Penner-Hahn,
M. Whittaker, J. W. Whittaker, Biochemistry 1994, 33, 12553.
[4] J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705.
[5] a) J. A. Halfen, V. G. Young Jr., W. B. Tolman, Angew. Chem. 1996,
108, 1832; Angew. Chem. Int. Ed. Engl. 1996, 35, 1687; b) Y. Wang,
T. D. P. Stack, J. Am. Chem. Soc. 1996, 118, 13097; c) M. M.
Whittaker, W. R. Duncan, J. W. Whittaker, Inorg. Chem. 1996, 35,
382; d) A. Halfen, B. A. Jazdzewski, S. Mahapatra, L. M. Berreau,
E. C. Wilkinson, L. Que Jr., W. B. Tolman, J. Am. Chem. Soc. 1997,
119, 8217; e) A. Sokolowski, H. Leutbecher, T. Weyhermüller, R.
Schnepf, E. Bothe, E. Bill, P. Hildebrandt, K. Wieghardt, J. Biol. Inorg.
[10] J. S. Thompson, J. C. Calabrese, Inorg. Chem. 1985, 24, 3167.
[11] Acid-Base Dissociation Constants in Dipolar Aprotic Solvents (Ed.: K.
Izutsu), Chemical Data Series No. 35, Blackwell Scientific, Oxford,
1990.
[12] P. L. Holland, K. R. Rodgers, W. B. Tolman, Angew. Chem. 1999, 111,
1210; Angew. Chem. Int. Ed. 1999, 38, 1139.
Reaction of Organic Selenocyanates with
Hydroxides: The One-Pot Synthesis of Dialkyl
Diselenides from Alkyl Bromides
Alain Krief,* Willy Dumont, and Cathy Delmotte
Â
Chem. 1997, 2, 444; f) D. Zurita, I. Gautier-Luneau, S. Menage, J.-L.
Pierre, E. Saint-Aman, J. Biol. Inorg. Chem. 1997, 2, 46; g) Y. Wang,
J. L. DuBois, B. Hedman, K. O. Hodgson, T. D. P. Stack, Science 1998,
279, 537; h) S. Itoh, S. Takayama, R. Arakawa, A. Furuta, M.
Komatsu, A. Ishida, S. Takamuku, S. Fukuzumi, Inorg. Chem. 1997, 36,
1407; i) J. Müller, T. Weyhermüller, E. Bill, P. Hildebrandt, L. Ould-
Moussa, T. Glaser, K. Wieghardt, Angew. Chem. 1998, 110, 637;
Angew. Chem. Int. Ed. 1998, 37, 616; j) B. A. Jazdzewski, V. G. Young,
Jr., W. B. Tolman, Chem. Commun. 1998, 2521; k) P. Chaudhuri, M.
Hess, U. Flörke, K. Wieghardt, Angew. Chem. 1998, 110, 2340; Angew.
Chem. Int. Ed. 1998, 110, 2217; l) P. Chaudhuri, M. Hess, T.
Weyhermüller, K. Wieghardt, Angew. Chem. 1999, 111, 1165; Angew.
Chem. Int. Ed. 1999, 38, 1095; m) P. Chaudhuri, M. Hess, J. Müller, K.
Hildebrandt, E. Bill, T. Weyhermüller, K. Wieghardt, J. Am. Chem.
Soc. 1999, 119, 9599.
Dedicated to Professor Bernd Giese
on the occasion of his 60th birthday
Since the beginning of organoselenium chemistry, organo-
selenocyanates have occupied a privileged position.[1] They
are easily prepared, are stable to atmospheric conditions, and
have widely contributed to the use of organoselenium
compounds in synthesis due to their exceptional versatility.[1]
They react with a large variety of compounds, producing
chemoselectively, in a single step and in almost quantitative
[*] Prof. Dr. A. Krief, Dr. W. Dumont, Dipl.-Chem. C. Delmotte
[6] a) K. D. Karlin, B. I. Cohen, Inorg. Chim. Acta 1985, 107, L17; b) K. D.
Karlin, B. I. Cohen, J. C. Hayes, A. Farooq, J. Zubieta, Inorg. Chem.
1987, 26, 147.
Á
Laboratoire de Chimie Organique de Synthese
Â
Departement de Chimie
Â
Facultes Universitaires Notre-Dame de la Paix
[7] a) U. Rajendran, R. Viswanathan, M. Palaniandavar, M. Lakshminar-
ayanan, J. Chem. Soc. Dalton Trans. 1992, 3563; b) M. Vaidyanathan,
R. Viswanathan, M. Palaniandavar, T. Balasubramanian, P. Prabha-
haran, T. P. Muthiah, Inorg. Chem. 1998, 37, 6418.
61 rue de Bruxelles, 5000 Namur (Belgium)
Fax : (32)81-724536
Angew. Chem. Int. Ed. 2000, 39, No. 9
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3909-1669 $ 17.50+.50/0
1669