3 (a) M. Christl, M. Braun, O. Deeg and S. Wolff, Eur. J. Org. Chem.,
2011, 968–982; (b) M. Braun, M. Christl, E.-M. Peters and K. Peters, J.
Chem. Soc., Perkin Trans. 1, 1999, 2813–2820; (c) M. Braun, M. Christl,
O. Deeg, M. Rudolph, E.-M. Peters and K. Peters, Eur. J. Org. Chem.,
1999, 2093–2101.
4 J.-H. Xu, Y.-L. Song, Z.-G. Zhang, L.-C. Wang and J.-W. Xu, Tetrahe-
dron, 1994, 50, 1199–1210.
5 S. W. Benson, Thermochemical kinetics, Wiley, New York, 2nd edn,
1976, p. 273.
clear again until the end of the cyclopropene addition (2 h).
After CA had been completely consumed (6 h of irradiation), the
mixture was quickly (15 min) concentrated to a volume of about
10 cm3 at 35 °C (bath)/15 mmHg, then immediately treated with
anhydrous methanol (150 cm3) and kept at 20 °C for 24 h. Evap-
oration of the methanol in vacuo and flash chromatography
(SiO2, pentane–ethyl acetate 9 : 1) of the residue at −30 °C furn-
ished (2α,5β,5aβ,6aβ,7β)-5,7,8-trichloro-3,5,5a,6,6a,7-hexahy-
dro-2-methoxy-5,7-methano-2H-cyclopropa[4,5]cyclohepta[1,2-
b]pyran-9-one 10 (375 mg, 36%) as an oil, which gave colour-
less crystals, mp 148–150 °C, after treatment with a small quan-
tity of ethyl acetate (Found: C, 48.2; H, 3.3. C13H11Cl3O3
requires C, 48.55; H, 3.45%); νmax (KBr)/cm−1 3085w, 3072w,
3002w, 2960m, 2940m, 2910w, 2900w, 2845w, 1788s, 1584m,
1451m, 1442m, 1420m, 1392m, 1373m, 1352m, 1338m,
1232m, 1222m, 1182m, 1172m, 1150m, 1142m, 1128m, 1113s,
1086m, 1068s, 1060s, 1022s, 1010s, 984s, 955m, 940s, 915s,
878s, 855m, 839m, 822s, 818s, 792w, 762w, 751m and 737m;
δH (200 MHz; CDCl3) 0.78 (1 H, dt, J 7.9 and 3.9, 6-Hα), 1.14
(1 H, dt, J 7.9 and 7.1, 6-Hβ), 2.04 (1 H, ddd, J 7.6, 7.1 and 3.8)
and 2.63 (1 H, ddd, J 7.6, 7.1 and 4.0) (5a-H and 6a-H), 2.48 (1
H, ddd, J 18.6, 5.6 and 2.0) and 2.68 (1 H, ddd, J 18.6, 4.3 and
3.4) (3-Hα and 3-Hβ), 3.42 (3 H, s, CH3), 5.16 (1 H, ddd, J 4.3,
2.0 and 0.6, 2-H) and 6.14 (1 H, ddd, J 5.6, 3.4 and 0.6, 4-H);
δC (50 MHz; CDCl3) 11.3 (C-6), 27.1 and 32.0 (C-5a and C-6a),
30.0 (C-3), 56.0 (CH3), 75.2 and 76.6 (C-5 and C-7), 98.6 (C-2),
115.9 (C-8), 118.5 (C-4), 130.7 (C-4a), 143.3 (C-8a) and 192.2
(C-9); m/z (EI, 70 eV) 326, 324, 322, 320 (M+, 1, 10, 30, 31%),
285 (10), 255 (10), 253 (15), 249 (15), 227 (11), 225 (14), 199
(12), 162 (11), 115 (14), 71 (79), 58 (100) and 45 (17).
6 J.-H. Xu, L.-C. Wang, J.-W. Xu, B.-Z. Yan and H.-C. Yuan, J. Chem.
Soc., Perkin Trans. 1, 1994, 571–577.
7 Empirical correlations between oxidation and ionisation potentials have
been established by: L. L. Miller, G. D. Nordblom and E. A. Mayeda, J.
Org. Chem., 1972, 37, 916–918, as well as P. G. Gassman and
R. Yamaguchi, J. Am. Chem. Soc., 1979, 101, 1308–1310.
8 P. Bischof and E. Heilbronner, Helv. Chim. Acta, 1970, 53, 1677–1682.
9 K. B. Wiberg, G. B. Ellison, J. J. Wendoloski, C. R. Brundle and N.
A. Kuebler, J. Am. Chem. Soc., 1976, 98, 7179–7182.
10 K. B. Wiberg, Angew. Chem., 1986, 98, 312–322; K. B. Wiberg, Angew.
Chem., Int. Ed. Engl., 1986, 25, 312–322.
11 (a) J. D. Roberts and R. H. Mazur, J. Am. Chem. Soc., 1951, 73, 2509–
2520; (b) K. L. Servis and J. D. Roberts, Tetrahedron Lett., 1967, 1369–
1372.
12 T. W. Bentley, S. J. Norman, R. Kemmer and M. Christl, Liebigs Ann.,
1995, 599–608.
13 F. Thalhammer, U. Wallfahrer and J. Sauer, Tetrahedron Lett., 1990, 31,
6851–6854.
14 T. W. Bentley, S. J. Norman, E. Gerstner, R. Kemmer and M. Christl,
Chem. Ber., 1993, 126, 1749–1757.
15 R. L. Cook and T. B. Malloy, Jr., J. Am. Chem. Soc., 1974, 96, 1703–
1707.
16 M. Christl, Chem. Ber., 1975, 108, 2781–2791.
17 M. S. Baird, D. G. Lindsay and C. B. Reese, J. Chem. Soc. C, 1969,
1173–1178.
18 K. Peters, E.-M. Peters, M. Braun and M. Christl, Z. Kristallogr. – New
Cryst. Struct., 2000, 215, 47–48.
19 T. Ichino, S. M. Villano, A. J. Gianola, D. J. Goebbert, L. Velarde,
A. Sanov, S. J. Blanksby, X. Zhou, D. A. Hrovat, W. T. Borden and W.
C. Lineberger, Angew. Chem., 2009, 121, 8661–8663; T. Ichino, S.
M. Villano, A. J. Gianola, D. J. Goebbert, L. Velarde, A. Sanov, S.
J. Blanksby, X. Zhou, D. A. Hrovat, W. T. Borden and W. C. Lineberger,
Angew. Chem., Int. Ed., 2009, 48, 8509–8511.
The 1H NMR spectrum of the crude product prior to methano-
lysis indicated the presence of a complex mixture, whose major
component, apart from chlorobenzene, was most likely the
α-chloro ether 14; δH (250 MHz; CDCl3) 0.84 (1 H, dt, J 7.9
and 3.9) and 1.21 (1 H, dt, J 7.9 and 7.1) (6-H2), 2.16 (1 H, ddd,
J 7.7, 7.1 and 3.7) and 2.69 (1 H, ddd, 7.7, 7.1 and 4.1) (5a-H
and 6a-H), 6.24 (1 H, ddd, J 6.6, 2.6 and 1.0) and 6.39 (1 H, dt,
J 4.3 and 1.2) (2-H and 4-H); because of several multiplets in
the pertinent region, the signals of the 3-CH2 group could not be
unambiguously localised, but the most likely chemical shifts are
δ 2.90 and 3.00.
20 H. F. Bettinger, Angew. Chem., 2010, 122, 680–682; H. F. Bettinger,
Angew. Chem., Int. Ed., 2010, 49, 670–671.
21 H. M. R. Hoffmann, Angew. Chem., 1984, 96, 29–48;
H. M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1984, 23, 1–19.
22 A. R. Matlin, P. M. Lahti, D. Appella, A. Straumanis, S. Lin, H. Patel,
K. Jin, K. P. Schrieber, J. Pauls and P. Raulerson, J. Am. Chem. Soc.,
1999, 121, 2164–2173.
23 C. J. Cramer and S. E. Barrows, J. Phys. Org. Chem., 2000, 13, 176–186.
24 A. R. Matlin, in CRC Handbook of Organic Photochemistry and Photo-
biology, ed. W. M. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd
edn, 2004, ch. 81.
25 (a) G. L. Closs and K. D. Krantz, J. Org. Chem., 1966, 31, 638;
(b) P. Binger, P. Wedemann and U. H. Brinker, Org. Synth., 2000, 77,
254–259; Org. Synth., 2004, Coll. Vol. 10, 231–234.
Notes and references
26 (a) R. Köster, S. Arora and P. Binger, Liebigs Ann. Chem., 1973, 1219–
1235; (b) P. Binger, Synthesis, 1974, 190–192; (c) B. Halton and M.
G. Banwell, in The Chemistry of the Cyclopropyl Group, ed. S. Patai and
Z. Rappoport, Wiley, Chichester, 1987, part 2, ch. 21.
27 Earlier investigations on this subject are quoted in ref. 3a.
28 Cyclobutene was prepared according to A. C. Cope, A. C. Haven, Jr., F.
L. Ramp and E. R. Trumbull, J. Am. Chem. Soc., 1952, 74, 4867–4871.
29 P. H. M. Budzelaar, gNMR, version 4.0, Cherwell Scientific Publishing
Ltd., Oxford, 1995–1997.
1 (a) K. Maruyama and A. Osuka, in The Chemistry of Quinonoid Com-
pounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1988, ch. 13,
vol. 2, part 1; (b) D. Creed, in CRC Handbook of Organic Photochemis-
try and Photobiology, ed. W. M. Horspool and P.-S. Song, CRC Press,
Boca Raton, 1995, pp. 737–747; (c) A. Gilbert, in CRC Handbook of
Organic Photochemistry and Photobiology, ed. W. M. Horspool and F.
Lenci, CRC Press, Boca Raton, 2nd edn, 2004, ch. 87.
2 S. M. Hubig, T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc., 1997,
119, 2926–2935.
4406 | Org. Biomol. Chem., 2012, 10, 4400–4406
This journal is © The Royal Society of Chemistry 2012