Journal of the American Chemical Society
Article
seven, whereas for Fe, the most oxophilic of the group, we
detect methane but not methanol. This provides key insights as
to how one might engineer a surface to improve selectivity
toward one product or the other by modifying the binding
energy for Cads and Oads to favor or disfavor C−O bond
breakage. Controlling the Hads binding energy will also be key
for disfavoring competing HER. These adsorbate binding
characteristics are particularly important to investigate under
the reaction conditions relevant to the CO2RR.
The results of this study offer the most consistent and
complete picture available to date regarding the CO2RR activity
and selectivity for these elemental transition metal catalysts.
The insights gained demonstrate the importance of measuring
CO2RR activity over a wide range of potentials with methods
capable of identifying and quantifying even minor products.
Our findings show that the surface chemistry of elemental
transition metals is richer than previously thought and that
electrocatalysts that can produce hydrocarbons or alcohols are
not as elusive as previously believed. The deeper understanding
of transition-metal catalysts presented here provides important
guidance in searching for catalysts with higher CO2RR activity
and selectivity by means of tuning adsorbate binding energies
appropriately, perhaps in the form of transition-metal alloys.
Improved CO2RR catalysts could enable new technologies with
the ability to address the intermittent nature of renewable
electricity while recycling CO2 to produce fuels and industrial
chemicals that carry global importance in a sustainable manner,
free of fossil fuels.
Anders Nilsson and Prof. Jens K. Nørskov for helpful
discussions.
REFERENCES
■
(1) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
15729.
(2) Olah, G. A.; Prakash, G. K. S.; Goeppert, A. J. Am. Chem. Soc.
2011, 133, 12881.
(3) Barnhart, C. J.; Benson, S. M. Energy Environ. Sci. 2013, 6, 1083.
(4) Gattrell, M.; Gupta, N.; Co, A. Energy Convers. Manage 2007, 48,
1255.
(5) Lin, J.; Ding, Z.; Hou, Y.; Wang, X. Sci. Rep. 2013, 3, DOI:
10.1038/srep01056.
(6) Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.;
Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643.
(7) Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S.
W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132.
(8) Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.;
Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
(9) Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E.
Science 2010, 327, 313.
(10) Cole, E. B.; Lakkaraju, P. S.; Rampulla, D. M.; Morris, A. J.;
Abelev, E.; Bocarsly, A. B. J. Am. Chem. Soc. 2010, 132, 11539.
(11) Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H.
Energy Environ. Sci. 2012, 5, 9217.
(12) Salehi-Khojin, A.; Jhong, H.-R. M.; Rosen, B. A.; Zhu, W.; Ma,
S.; Kenis, P. J. A.; Masel, R. I. J. Phys. Chem. C 2012, 117, 1627.
(13) Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.;
Koper, M. T. M. Chem. Sci. 2011, 2, 1902.
(14) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134,
19969.
(15) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 1695.
(16) Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594,
1.
ASSOCIATED CONTENT
■
S
* Supporting Information
(17) Handbook of Fuel Cells: Fundamentals, Technology and
Application; Hori, Y., Ed.; VHC-Wiley: Chichester, U.K., 2003; Vol. 2.
(18) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.;
Norskov, J. K. Energy Environ. Sci. 2010, 3, 1311.
(19) Peterson, A. A.; Norskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251.
(20) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy
Environ. Sci. 2012, 5, 7050.
(21) Yang, C.-C.; Yu, Y.-H.; van der Linden, B.; Wu, J. C. S.; Mul, G.
J. Am. Chem. Soc. 2010, 132, 8398.
(22) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O.
ACS Appl. Mater. Interfaces 2011, 3, 2594.
Binding strength of CO and O, mass transport limitations,
minor products of CO2RR, isotope-labeled 13CO2 reduction,
trace metal impurities, additional volcano plots. This material is
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
(23) Gonzalez, L.; Miranda, R.; Ferrer, S. Surf. Sci. 1982, 119, 61.
(24) Seip, U.; Tsai, M. C.; Christmann, K.; Kuppers, J.; Ertl, G. Surf.
Sci. 1984, 139, 29.
(25) Hori, Y.; Murata, A.; Yoshinami, Y. J. Chem. Soc., Faraday Trans.
1991, 87, 125.
The manuscript was written through contributions of all
authors.
Notes
The authors declare no competing financial interest.
(26) Jiang, T.; Mowbray, D. J.; Dobrin, S.; Falsig, H.; Hvolbæk, B.;
Bligaard, T.; Nørskov, J. K. J. Phys. Chem. C 2009, 113, 10548.
(27) Hummelshøj, J. S.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.;
Nørskov, J. K. Angew. Chem., Int. Ed. 2012, 51, 272.
(28) Hori, Y.; Koga, O.; Aramata, A.; Enyo, M. Bull. Chem. Soc. Jpn.
1992, 65, 3008.
(29) Koga, O.; Matsuo, T.; Yamazaki, H.; Hori, Y. Bull. Chem. Soc.
Jpn. 1998, 71, 315.
(30) Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem.
B 1997, 101, 7075.
ACKNOWLEDGMENTS
■
This material is based upon work supported by the National
Science Foundation under Grant Number 1066515 and by the
Global Climate & Energy Project (GCEP) at Stanford
University. T.F.J. gratefully acknowledges partial support
provided by the MDV Innovator Award program at Mohr
Davidow Ventures. K.P.K. and E.R.C. acknowledge support by
the National Science Foundation Graduate Research Fellow-
ship under Grant No. (DGE-1147470). E.R.C. acknowledges
support from the Ford Foundation. D.N.A. acknowledges
support from a Stanford Graduate Fellowship. The authors
would like to thank Dr. Corey Liu of the Stanford Magnetic
Resonance Laboratory and Dr. Stephen R. Lynch of the
Stanford Chemistry for technical assistance with NMR
experiments. The authors would also like to thank Dr. Zhebo
Chen, Dr. Arnold Forman, Prof. Andrew A. Peterson, Prof.
(31) Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. J.
Phys. Chem. Lett. 2013, 4, 388.
(32) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Surf. Sci. 1995,
335, 258.
(33) Taguchi, S.; Aramata, A.; Enyo, M. J. Electroanal. Chem. 1994,
372, 161.
(34) Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Angew. Chem.,
Int. Ed. 2013, 52, 2459.
(35) Greeley, J.; Markovic, N. M. Energy Environ. Sci. 2012, 5, 9246.
F
dx.doi.org/10.1021/ja505791r | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX